Где применяют токи высокой частоты. Физические основы токов высокой частоты. Применение низкочастотных токов в медицине

Дарсонваль - метод электротерапии, при котором воздействие оказывается импульсными переменными токами высокой частоты и напряжения, но малой силы (частота 110-400 кГц, напряжение 20 кВ, сила тока до 100-200 мА). Метод назван в честь французского физиолога Дарсонваля, разработавшего основные принципы его применения в медицинской практике. Дарсонваль используется в лечении широкого спектра заболеваний с 1891 года.

Дарсонвализация подразделяется на местную и общую.

Местная дарсонвализация проводится с помощью вакуумного электрода, через который подается ток различного напряжения. По мере нарастания напряжения увеличивается ионизация воздуха и величина искрового разряда. Для проведения общей дарсонвализации пациента помещают в катушку колебательного контура, называемую «клеткой Дарсонваля».

Действующим фактором при местной дарсонвализации является импульсный высокочастотный ток и электрический разряд между электродом и телом пациента, оказывающие влияние непосредственно в зоне воздействия; при общей дарсонвализации - вихревые высокочастотные токи, наведенные в ткани по принципам электромагнитной индукции, и изменяющие параметры деятельности ЦНС, сосудистой и иммунной систем.

Диатермический ток. В отличие от токов д"Арсонваля, диатермический ток имеет до 2 млн. изменений полярности в секунду, а сила тока уменьшается до 500 mА. Интенсивность тока зато увеличивается до 1--5 А. Электроды применяются металлические, свинцовые или станиолевые, без прокладок, непосредственно на кожу.

Действие местной диатермии сводится к вызыванию прилива крови в подвергающихся воздействию тканях. Кроме того, относительно глубокое проникновение тепла влияет на состояние подлежащих тканей. На месте наложения электродов создается ощущение тепла вследствие сопротивления, оказываемого току со стороны тканей, обладающих различной проводимостью.

В дерматологической практике очаговой диатермией пользуются для лечения вялых, потерявших напряжение, упругость атонических тканей, склеродермии, рубцов, язв от отморожения, рентгеновских язв, при озноблениях, при красных, холодных, потных руках и т. п.

Можно пользоваться сегментарной диатермией шейных и грудных симпатических узлов. При этом металлический электрод размером 6 X 8 см помещается на область, расположенную между VI шейным и II грудным позвонком. Второй электрод несколько большей величины (8 X 14 см) помещается на подложечную область. Сила тока дается в 2--3 А, продолжительность сеанса до 20 минут. Всего проводится 15--20 сеансов. Такая сегментарная диатермия с успехом применяется при гипергидрозе стоп и ладоней, при атрофиях кожи, при склеродермии и т. д.

В дерматологической практике применяют также хирургическую диатермию. Для последней используют электроды с очень маленькой действующей поверхностью, вследствие чего на месте их приложения получается коагулирование тканей.

Применяют три вида хирургической диатермии:

  • 1) электрокоагуляцию,
  • 2) электротомию (электрическое резание)
  • 3) электродиcсекацию.

Наиболее простой является электрокоагуляция. Для дерматологических целей активный электрод прикладывают к участку, который хотят удалить, или электрод в виде иголки вкалывают на желаемую глубину в ткань. При пропускании тока в 0,5--2 А быстро наступает повеление, коагуляция ткани, образуется некроз. Под влиянием защитной повязки в течение 2--3 недель некротизировавшийея участок отпадает и остается розового цвета рубец, который понемногу принимает цвет обычной кожи и выравнивается с поверхностью окружающей кожи. Если разрушаются большие по величине участки ткани, то и в этих случаях рубец в косметическом отношении бывает достаточно хорошим. Однако при заживлении раны необходимо тщательно оберегать ее от каких-либо травм, защищая повязками.

Электрокоагуляция применяется для разрушения ангиом, родимых пятен, бородавок, ксантелазм, татуировок, телеангиэктазий. При гипертрихозе в целях эпиляции применение электрокоагуляции является целесообразнее, чем электролиз, так как она дает эффект в 3--5 секунд. Однако применение электрокоагуляций с целью эпиляции волос требует навыка и опыта со стороны персонала, чтобы не вызвать некроза на поверхности кожи у устья волоса и вместе с этим образования рубца.

Вторым видом использования хирургической диатермии является электротомия. Производится она при помощи так называемого диатермического скальпеля. При этом вокруг разреза ткань коагулируется, что предохраняет организм от появления метастазов или внедрения в ткани микробов. Заживление первичным натяжением при этом происходит редко; обычно заживление происходит вторичным натяжением.

Третьим видом использования хирургической диатермии является диссекация или электродиссекация. При этом проскакивающей искрой достигается полное обугливание подлежащей уничтожению ткани. Получаемый после коагуляции рубец бывает очень хорош в косметическом отношении. Однако и в этих случаях необходимо до заживления оберегать очаг поражения от травм и вторичной инфекции.

Токи высоких и ультравысоких частот . С лечебной целью применяются токи высокой частоты, а именно от 10000000 до 300000000 и больше периодов в 1 секунду. Такая частота соответствует электромагнитным волнам длиной от 30 до 1 м. Частоты, соответствующие длине волны от 10 до 1 м, называются ультравысокими (УВЧ). Источником тока УВЧ, как принято говорить, генератором ультракоротких волн (УКВ), является аппаратура, в принципе сходная с диатермической.

В качестве электродов применяют различной величины и формы металлические пластинки, покрытые изолирующим веществом (деревом, резиной, стеклом, эбонитом).

Электроды располагаются на некотором расстоянии от поверхности кожи. Чем ближе к кожной поверхности находится электрод, тем поверхностнее эффект действия УВЧ. Так, при необходимости воздействовать на кожу (импетиго, фолликулиты, фурункулы, акне, небольшие абсцессы и т. п.) электронная пластинка ставится совсем близко к пораженному участку кожи.

Продолжительность сеанса при местных воспалительных и нагаои-тельных процессах бывает около 5--10 минут. При волне в 12 м, применяя пятиминутные сеансы, получают очень хорошие результаты при лечении невродермитов, экземы, токсических заболеваний кожи. Сеансы производятся ежедневно.

Для установления возникновения электрического поля между электродами вносят в электрическое поле неоновую лампочку, прилагаемую к аппарату. При правильной работе аппарата неоновая лампочка начинает светиться.

Токами высокой частоты (ТВЧ) принято считать токи, для которых не выполняется условие квазистационарности, следствием чего является сильно выраженный скин-эффект

Токами высокой частоты (ТВЧ) принято считать токи, для которых не выполняется условие квазистационарности, следствием чего является сильно выраженный скин-эффект. По этой причие ток протекает по поверхности проводника, не проникая в его объём. Частота таких токов превышает 10000 Гц.

Чтобы получить токи с частотой более нескольких десятков килогерц используются электромашинные генераторы, в состав которых входит статор и ротор. На их обращённых друг к другу поверхностях есть зубцы, из-за взаимного перемещения которых возникает пульсация магнитного поля. Итоговая частота получаемого на выходе тока равна произведению частоты вращения ротора на число зубцов на нём.

Также для получения ТВЧ используются колебательные контуры, например, электрическая цепь, в составе которой имеется индуктивность и ёмкость. Чтобы получить ТВЧ частоты в миллиарды герц, применяются установки с полым колебательным контуром (ЛОВ, ЛБВ,магнетрон , клистрон).

Если проводник разместить в магнитном поле катушки, в которой течёт ток высокой частоты, то в проводнике возникнут большие вихревые токи, которые будут нагревать его. Температуру и интенсивность нагрева можно регулировать, изменяя ток в катушки. Благодаря этому свойству ТВЧ используют во многих областях человеческой деятельности: в индукционных печах, в металлургии для поверхностной закалки деталей, медицине, сельском хозяйстве, в бытовых приборах (микроволновые печи, различные устройства для приготовления пищи), радиосвязи, радиолокации, в телевидении и др.

Примеры использования токов высокой частоты

С помощью ТВЧ в индукционных печах можно расплавлять любые металлы. Преимущество этого вида выплавки заключается в возможности выплавки в условиях полного вакуума, когда исключается контакт с атмосферой. Это даёт возможность производить сплавы, чистые по неметаллическим включениям и ненасыщенные газами (водородом, азотом).

На закалочных станках с помощью ТВЧ удаётся выполнять закалку стальных изделий только в поверхностном слое из-за скин эффекта. Это даёт возможность получить детали с твёрдой поверхностью, способные сопротивляться значительным нагрузкам и в то же время без снижения износостойкости и пластичности, поскольку сердцевина остаётся мягкой.

В медицине токи высокой частоты уже давно применяются в приборах УВЧ, где с помощью нагрева диэлектрика осуществляется прогревание каких-либо органов человека. ТВЧ даже очень большой силы тока безвредны для человека, поскольку протекают исключительно в самых поверхностных слоях кожи. Также в медицине используются электроножи, основанные на ТВЧ, с помощью которых "заваривают" кровеносные сосуды и разрезают ткани.

Электрические токи широко используется в физиотерапии. Изменения в их параметрах при этом могут диаметрально влиять на механизмы действия и наблюдаемые эффекты на организм.

Высокочастотные токи в физиотерапии

Токи, применяемые в медицинских целях, подразделяются на низкие, средние и высокие. Высокочастотный ток определяется на частоте более 100000 герц.

Токи высокой частоты генерируются специальным оборудованием и применяются без непосредственного контакта с пациентом. Исключением является метод местной дарсонвализации, который использует воздействие высокочастотных токов через специальные электроды на теле.

Многие физиологические эффекты ВЧ-токов базируются на образовании эндогенного тепла в тканях. Высокочастотные токи вызывают мелкие колебания на молекулярном уровне, в результате чего выделяется тепло. Это тепло воздействует на разных глубинах в тканях, а эффект сохраняется какое-то время после завершения процедуры.

Применение ВЧ-токов в медицинской практике

Влияние высокочастотных токов на центральную нервную систему является седативным и на вегетативную – симпатолитическим, в общем, ВЧ-токи имеют расслабляющее действие на нервную систему. То же самое можно сказать и об их влиянии на гладкие мышцы бронхов, где спазмолитический эффект сочетается с противовоспалительным действием .

ВЧ-токи показаны при болевых синдромах при невралгии, неврите, радикулите и т.п. Обезболивающий эффект обусловлен увеличением болевого порога рецепторов кожи и ингибированием передачи болевых сигналов через нервы.

Процедуры с применением высокочастотных токов эффективны при медленном зарастании тканей при ранах, пролежнях и трофическом диабете. Этот механизм действия связан с индуцированием эндогенного тепла расширяющего сосуды. При спастических состояниях, таких, как болезнь Бюргера или синдром Рейно ВЧ-токи также могут облегчить некоторые симптомы.

В другом случае, влияние токов высокой частоты на кровеносные сосуды является тонизирующим и используется при лечении варикозного расширения вен и геморроя. Иногда бактерицидный эффект высокочастотных токов применяется для лечения инфицированных ран. Бактерицидное и противомикробное действие ВЧ-токов имеет косвенные механизмы, увеличивающие локальные кровотоки, стимулирование и ускорение фазы воспалительного процесса.

Противопоказаниями к применению всех типов токов в медицине являются крупные металлические предметы в тканях, имплантированные кардиостимуляторы, беременность, склонность к кровотечению и некоторые другие.

Токи ультравысокой частоты

Токи ультравысокой частоты являются еще одной группой высокочастотных токов. Они также работают по принципу образования эндогенного тепла и направленной активизации обмена веществ в определенных тканях. Их действие применяется в ответ на самые различные патологические процессы. Время одной процедуры составляет в среднем 10-15 минут, а курсы различаются по длине в зависимости от достигнутого результата.

Облучение почки токами ультравысокой частоты при остром и хроническом гломерулонефрите дает сосудорасширяющий и противовоспалительный эффект, действуя на сосуды, и усиливает диурез. С другой стороны, облучение надпочечников естественным образом стимулирует выработку кортикостероидов и используется при лечении некоторых аутоиммунных заболеваний.

Третья группа высокочастотных токов, применяемых в медицине – сантиметровые высокочастотные токи. СВЧ волны воздействуют на кровь, лимфу и паренхиматозные органы. Сантиметровые волны имеют обедненный эффект на 3-4 сантиметра вглубь поверхности тела.

Принцип действия всех типов высокочастотных токов связан с образованием эндогенного тепла. Последнее оказывает различное влияние на различные органы. Разница между токами в частоте определяет глубину проникновения тепла в тело и предпочтения для лечения определенного типа ткани, с большим или меньшим содержанием воды. Лечение ВЧ-токами должно строго соответствовать типу патологии, местонахождению и виду ткани.


Подпишитесь на наш Ютуб-канал !

Низкочастотные токи в физиотерапии

Низкочастотный ток определяется от одного до 1000 герц. В пределах этого диапазона, в зависимости от частоты, эффекты НЧ-токов отличаются. Большинство медицинского оборудования используют токи низкой частоты с частотой 100-150 Гц.

В общем, терапевтическое действие импульсных токов низкой частоты, может быть разделено на раздражающее и подавляющее. Каким будет эффект такой терапии, зависит главным образом от частоты тока. Низкочастотные токи влияют на электрически возбудимые структуры, такие, как нервы и мышцы.

Применение токов низкой частоты осуществляется посредством электродов, которые размещаются на травмированных мышцах, больном участке тела или другом месте. В большинстве случаев электроды накладывают на кожу. Возможно, однако, их введение во влагалище, прямую кишку или имплантация в определенных группах мышц и костномозговом канале, и даже в головном мозге .

Нормальный процесс возбуждения нервных и мышечных клеток достигается за счет изменения заряда по обе стороны от положительного и отрицательного электродов. Применение электрического тока с определенными характеристиками вблизи возбудимых структур оказывает стимулирующее воздействие на них. Локальный способ действия тока обусловлен изменением заряда мембраны клеток.

Применение низкочастотных токов в медицине

Низкочастотные токи используются для стимуляции мышц с сохраненной иннервацией, например, когда при иммобилизации после переломов костей развиваются гипотрофия и гипотония (низкий тонус) мышц в иммобилизованной области. Это происходит потому, что мышцы не выполняют движения и не стимулируются нервами.

В этих случаях, приложенный ток низкой частоты вызывает сокращение части мышечного волокна, что улучшает кровоснабжение и, до известной степени, помогает предотвратить возникновение тяжелой гипотрофии. Тем не менее, чтобы достичь такого эффекта, электростимуляция должна применяться достаточно часто.

В других случаях, стимулирование мышцы может быть нарушено иннервацией (паралич, парез). Необходимо повторное использование низкочастотных токов, но с их различными физическими характеристиками. Цель состоит в том, чтобы стимулировать мышцы и восстановить целостность нерва.

Электростимуляция может быть применена не только к скелету, но и при различных заболеваниях гладких мышц, таких как послеоперационная атония кишечника, послеродовая атония матки и пр. Другое применение этого метода – стимуляция венозной стенки во время варикоза и геморроя. Противопоказания для стимулирования низкочастотными токами – беременность, кардиостимуляторы и некоторые другие условия.

Второе основное применение низкочастотных токов – снижение боли при невралгии, миалгии, тендините, головных болях и других условиях. Наиболее распространенный метод – чрезкожная электрическая стимуляция нервов. При данном виде стимуляции, идет воздействие на конкретные весьма чувствительные нервные волокна, которые блокируют передачу болевой информации на уровне спинного мозга. Продолжительность одного сеанса такой терапии составляет от 10 минут до 1-2 часов. Наиболее подходящая частота для достижения анальгезирующего эффекта составляет около 100 Гц.

Отказ от ответственности: Информация, представленная в этой статье про применение низкочастотных и высокочастотных токов в физиотерапии, предназначена только для информирования читателя. Она не может быть заменой для консультации профессиональным медицинским работником.

Токи с частотой выше 10000 гц называют токами высокой частоты (ТВЧ). Их получают с помощью электронных устройств.

Если поместить проводник внутрь катушки, по которой течет ток высокой частоты, то в проводнике возникнут . Вихревые токи нагревают проводник. Скорость нагрева и температуру легко регулировать, меняя ток в катушке.


В индукционной печи можно плавить самые тугоплавкие металлы. Для получения особо чистых веществ плавку можно вести в вакууме и даже без тигля, подвесив расплавленный металл в магнитном поле. Высокая скорость нагрева очень удобна при прокатке и ковке металла. Подбирая форму катушек, можно вести пайку и сварку деталей при наилучшем температурном режиме.


Ток i , текущий по проводнику, создает магнитное поле B. На очень высоких частотах становится заметным влияние вихревого электрического поля Е, порождаемого изменением поля В.

Влияние поля Е усиливает ток на поверхности проводника и ослабляет в середине. При достаточно большой частоте ток течет только в поверхностном слое проводника.

Метод поверхностной закалки стальных изделий придумал и предложил российский ученый В. П. Вологдин. На высокой частоте индукционный ток нагревает только поверхностный слой детали. После быстрого охлаждения получается нехрупкое изделие с твердой поверхностью.

Закалочный станок

Действие токов высокой частоты на диэлектрики

На диэлектрики действуют высокочастотным электрическим полем, помещая их между пластинами конденсатора. Часть энергии электрического поля расходуется при этом на нагрев диэлектрика. Нагрев с помощью ТВЧ особенно хорош, если теплопроводность вещества мала.


) широко применяется для сушки и склейки древесины, для производства резины и пластмасс.

УВЧ-терапия - это диэлектрический нагрев тканей тела. Смертельно опасен для человека постоянный и низкочастотный ток свыше нескольких миллиамперов. Ток высокой частоты (≈ 1 МГц), даже при силе 1 А, вызывает только разогрев тканей и используется для лечения.

"Электронож" - высокочастотный аппарат, широко применяется в медицине. Он разрезает ткани и "заваривает" кровеносные сосуды.

Прочие применения токов высокой частоты

Зерно, обработанное перед посевом ТВЧ, заметно повышает урожайность.

Индукционный нагрев газовой плазмы позволяет получить высокие температуры.

Поле частотой 2400 МГц в микроволновой электропечи варит суп прямо в тарелке за 2-3 минуты.

На изменении параметров колебательного контура при поднесении катушки к металлическому предмету основано действие миноискателя.

Токи высокой частоты применяются также для радиосвязи, телевидения и радиолокации.

Переменным называют ток, периодически меняющийся по величине и направлению. В течение одного колебания сила тока нарастает до максимума, затем спадает до нуля, меняя направление на обратное, снова нарастает до максимума и опять достигает нулевого значения.

Отрезок времени (Т), в течение которого происходит одно колебание, называется периодом. Величина, обратная периоду, т. е. 1/Т, носит название частоты. Если период



Т выражен в секундах, то частота - это количество колебаний в секунду. Частота, соответствующая одному колебанию в секунду, принята за единицу и в честь физика Herz получила название герц (гц).

Если колебание совершается по закону синуса, то графическим изображением колебательного процесса является синусоида. Такие колебания получили название гармонических.

При прохождении переменного тока по проводнику вокруг последнего возникают электромагнитные колебания, распространяющиеся в пространстве во всех направлениях; они образуют электромагнитные волны. Электромагнитные волны распространяются в пустоте со скоростью света - 300 000 км/сек (3*10 10 см/сек), а в различных средах с несколько меньшей скоростью.

Расстояние, которое проходит электромагнитная волна за время одного периода, называют длиной волны.

В настоящее время электромагнитные волны так называемой радиочастоты делят на длинные - 3000 м и больше, средние - от 3000 до 200 м, промежуточные - от 200 до 50 м, короткие - от 50 до 10 м, ультракороткие - менее 10 л, а последние на метровые - от 10 до 1 м, дециметровые - от 1 м до 10 см и сантиметровые - от 10 до 1 см.

Токи любой частоты, в том числе высокой, получают с помощью колебательного контура, который состоит из конденсатора (электрической емкости - С) и индуктивности (проволочной катушки - L, при токах высокой частоты без железного сердечника).

Если конденсатору колебательного контура сообщить заряд, то он начинает разряжаться через индуктивность: при этом вокруг нее за счет энергии тока возникает магнитное поле. Когда конденсатор полностью разрядится, ток должен прекратиться, но по мере того, как ток ослабевает, энергия магнитного поля, накопленная в индуктивности, переходит обратно в ток того же направления; в результате конденсатор снова зарядится, но знак заряда на его обкладках изменится на обратный. Получив заряд, конденсатор снова начинает разряжаться через индуктивность, но ток его разрядки будет уже противоположного направления. Прохождение тока через индуктивность будет снова сопровождаться возникновением магнитного поля, энергия которого по мере ослабления разрядного тока будет переходить в энергию наведенного тока того же направления. Обкладки конденсатора окажутся снова заряженными, и заряд их будет того же знака, что и вначале. Энергия, накопленная теперь в конденсаторе, меньше первоначальной, так как часть ее уходит на преодоление омического сопротивления контура. Идя сначала в одном направлении, а затем в обратном, ток разрядки конденсатора совершает одно колебание.

Получив снова заряд, хотя и меньший первоначального, конденсатор снова начнет разряжаться через индуктивность. С каждым колебанием амплитуда тока будет уменьшаться. Это будет продолжаться до тех пор, пока вся энергия, накопленная в конденсаторе, не израсходуется на преодоление омического сопротивления контура и частично на излучение электромагнитных волн - возникает группа затухающих колебаний. Для того чтобы колебания были малозатухающими или незатухающими, необходимо периодически подавать энергию в колебательный контур, восполнять ее потери. В современных медицинских аппаратах высокой частоты это осуществляется с помощью электронных ламп, применяемых в генераторных схемах.

Наиболее простой генераторной лампой является триод. Он имеет 3 электрода: катод, управляющую сетку и анод. При накале катод выделяет электроны. Если подать на анод положительный потенциал, а на катод отрицательный, то между анодом и катодом возникает электрическое поле, под влиянием которого отрицательно заряженные электроны притягиваются к аноду, имеющему положительный потенциал. Проникая между витками управляющей сетки, расположенной между катодом и анодом, электроны достигают анода, в результате чего в цепи анода проходит ток. Управляющая сетка расположена ближе к катоду и оказывает на электроны более сильное воздействие, чем анод. Когда на управляющей сетке имеется положительный потенциал, движение электронов ускоряется - в единицу времени большее число их попадает на анод, ток усиливается; когда же на сетке имеется отрицательный потенциал, она отталкивает электроны, не пропуская их к аноду - анодный ток становится слабее.

Триод имеет ряд недостатков, а это заставило перейти к более совершенным лампам - тетродам, лучевым тетродам, пентодам и др. Эти лампы применяют в медицинских высокочастотных генераторах, работающих на самовозбуждении с обратной связью.

Анодный ток, проходящий в цепи генераторной лампы, заряжает конденсатор колебательного контура, что ведет к возникновению электрических колебаний в анодном колебательном контуре. Колебания тока создают в катушке индуктивности колебательного контура переменное магнитное поле, силовые линии которого пересекают витки рядом расположенной катушки индуктивности управляющей сетки, наводя на ней переменные потенциалы. В результате этого колебательный контур в цепи анода через связь с сеткой лампы начинает управлять питающим его анодным током. Такая связь называется обратной. При наличии обратной связи (если включить питание в генератор) в анодном колебательном контуре возникают колебания, генератор самовозбуждается. Таков принцип работы генератора на самовозбуждении.

Практически в аппаратах высокой и ультравысокой частоты устройство колебательного контура значительно сложнее. В аппаратах высокой частоты первоначально колебания возникают в маломощном задающем генераторе. Возникающие в нем колебания передаются обычно индуктивным путем в промежуточный усилитель, а затем в выходной усилитель, собранный на более мощных лампах. Принцип усиления заключается в том, что колебания с предыдущего контура поступают на управляющие сетки более мощных ламп последующего контура, что ведет к увеличению мощности колебаний.

Терапевтический контур, который служит для проведения лечебной процедуры, связан с предыдущим контуром, который обычно представляет собой выходной усилитель только индуктивно, чтобы обезопасить больного от высокого напряжения, под которым находятся предыдущие контуры.

Все контуры должны быть настроены в резонанс, т. е. на одну и ту же частоту. При этом переход энергии из одного контура в другой осуществляется наиболее полно.

Раньше для получения токов высокой частоты пользовались искровыми генераторами. В настоящее время они сняты с производства, так как не генерируют стабильной частоты, что создает радиопомехи.

Всякому электрическому току, в том числе высокочастотному, свойственно тепловое действие. Это тепло возникает внутри тканей, а потому получило название эндогенного в отличие от экзогенного, когда тепло проникает в ткани снаружи, как это происходит при воздействии лечебной грязи, парафина, грелки.

Для того чтобы понять причину появления тепла внутри тканей при токах высокой частоты, необходимо разобрать механизм их прохождения через ткани. В тканевых жидкостях и внутри клеток имеются ионы, преимущественно натрия и хлора, на которые диссоциирует основная соль, содержащаяся в организме, - хлористый натрий. Кроме ионов натрия и хлора, в организме в меньшем количестве присутствуют и другие ионы (кальция, магния, фосфора и т. п.), а также содержатся белковые молекулы, несущие на себе электрический заряд.

Кроме заряженных частиц, в тканях организма находятся полярные молекулы (диполи), у которых электрические заряды внутри молекулы смещены и можно различать два полюса - положительный и отрицательный. К дипольным молекулам (диполям) относятся, в частности, молекулы воды.

При подведении к тканям организма высокочастотного напряжения в них в пространстве между электродами возникает высокочастотное электрическое поле. Под его влиянием все заряженные частицы приходят в движение: отрицательные направляются к положительному, положительные - к отрицательному полюсу. Дипольные молекулы начинают поворачиваться вдоль поля, чтобы отрицательным полюсом быть обращенными в сторону положительно заряженного, положительным - в сторону отрицательно заряженного электрода.



Едва ионы и другие заряженные частицы успеют сдвинуться с места, как меняется направление электрического поля, что заставляет их изменить направление движения на обратное. С каждым периодом высокочастотного тока процесс этот будет повторяться. Заряженные частицы начнут колебаться с очень малой амплитудой около среднего положения с частотой колебаний высокочастотного тока. Такой ток, при котором возникает движение заряженных частиц, в данном случае колебательное, носит название тока проводимости.

При своих колебательных движениях заряженные частицы встречают сопротивление как при столкновении друг с другом, так и с окружающими частицами тканей, что сопровождается образованием тепла. Поворот дипольных молекул тоже встречает сопротивление со стороны окружающих частиц и сопровождается выделением тепла (так называемые диэлектрические потери). Поворот в высокочастотном электрическом поле диполей, несущих на концах заряды, носит название тока смещения (поляризации). Ткани человеческого тела обладают электрической емкостью и омическим сопротивлением, включенными параллельно, что схематически представлено на рис. 40. Индуктивное сопротивление у тканей практически отсутствует.

Клеточные мембраны являются диэлектриками, хотя и несовершенными, а межтканевые жидкости и протоплазма клеток имеют ионную проводимость. В результате возникают микроскопические конденсаторы (два проводника, разделенные слоем диэлектрика). Общая емкость человеческого тела довольно значительна и составляет 0,01-0,02 мкф.

При относительно небольших частотах (для токов высокой частоты до нескольких миллионов герц в секунду) преобладает ионная электропроводность, возникает ток проводимости, при больших же частотах (несколько десятков миллионов герц) увеличивается ток поляризации. При сверхвысоких частотах, превышающих 1 млрд. гц, ток поляризации возрастает еще больше, выраженнее становятся явления, которые относят за счет осцилляторного (колебательного) действия токов высокой частоты; к ним принадлежат физико-химические сдвиги, в частности увеличение дисперсности белков. Ионный состав и число полярных молекул в разных тканях отличаются друг от друга, поэтому при одной и той же частоте, а следовательно, и длине волны в тканях будет возникать неодинаковое количество тепла. Фактически будут греться все ткани, хотя несколько больше та, для которой длина волны ближе лежит к селективной (избирательной). По Н. Н. Малову, избирательной для мышц является длина волны 2,1 м, для крови - 2,6 м, для кожи - 6 м, для печени - 5,5 м, для мозга - 11 м, для жира - 35 м. Следует отметить, что частота и соответственно длина волны колебаний, генерируемых современными медицинскими аппаратами высокой частоты, не являются достаточно селективными для тканей человеческого тела. Несмотря на это, различие в нагревании тканей проявляется в той или иной степени. Вследствие очень малого сдвига ионов от среднего положения во время колебательных движений не происходит выраженного изменения концентрации ионов на границе клеточных мембран как вне, так и внутри клетки; этим можно объяснить отсутствие раздражающего действия высокочастотного тока на ткани.

Болевая чувствительность при действии токов высокой частоты уменьшается, что в основном не зависит от возникающего тепла, а является результатом осцилляторного колебательного эффекта токов высокой частоты. Возможно, что при этом нарушается связь между элементами нервного окончания, воспринимающего боль, что ведет к понижению его возбудимости; чем выше частота тока, тем более выражено его болеутоляющее действие.