Как найти неопределенный интеграл алгоритм. Примеры вычисления определённых интегралов. Решение тройных интегралов

Калькулятор решает интегралы c описанием действий ПОДРОБНО на русском языке и бесплатно!

Решение неопределённых интегралов

Это онлайн сервис в один шаг :

Решение определённых интегралов

Это онлайн сервис в один шаг :

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний предел для интеграла
  • Ввести верхний предел для интеграла

Решение двойных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)

Решение несобственных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Введите верхнюю область интегрирования (или + бесконечность)
  • Ввести нижнюю область интегрирования (или - бесконечность)

Решение тройных интегралов

  • Ввести подинтегральное выражение (подинтегральную функцию)
  • Ввести нижний и верхний пределы для первой области интегрирования
  • Ввести нижний и верхний предел для второй области интегрирования
  • Ввести нижний и верхний предел для третьей области интегрирования

Данный сервис позволяет проверить свои вычисления на правильность

Возможности

  • Поддержка всех возможных математических функций: синус, косинус, экспонента, тангенс, котангенс, корень квадратный и кубический, степени, показательные и другие.
  • Есть примеры для ввода, как для неопределённых интегралов, так и для несобственных и определённых.
  • Исправляет ошибки в ведённых вами выражениях и предлагает свои варианты для ввода.
  • Численное решение для определённых и несобственных интегралов (в том числе для двойных и тройных интегралов).
  • Поддержка комплексных чисел, а также различных параметров (вы можете указывать в подинтегральном выражении не только переменную интегрирования, но и другие переменные-параметры)

Интегралы онлайн на сайт для закрепления студентами и школьниками пройденного материала. Всякий раз, как только начать решать интеграл, нужно выявить его тип, без этого нельзя применять ни один метод, если не считать его табличным. Не всякий табличный интеграл виден явно из заданного примера, иногда нужно преобразовать исходную функцию, чтобы найти первообразную. На практике решение интегралов сводится к интерпретированию задачи по нахождению исходной, то есть первообразной из бесконечного семейства функций, но если заданы пределы интегрирования, то по формуле Ньютона-Лейбница остается лишь одна единственная функция, к которой нужно будет применять расчеты. Неформально интеграл онлайн является площадью между графиком функции и осью абсцисс в пределах интегрирования. Позвольте нам вычислить сложный интеграл по одной переменной и связать его ответ с дальнейшим решением задачи. Можно, что говорится, в лоб найти его от подынтегральной функции. Согласно основной теореме анализа, интегрирование является операцией, обратной дифференцированию, чем помогает решать дифференциальные уравнения. Существует несколько различных определений операции интегрирования, отличающихся в технических деталях. Однако все они совместимы, то есть любые два способа интегрирования, если их можно применить к данной функции, дадут один и тот же результат. Наиболее простым является интеграл Римана – это определенный интеграл или неопределенный интеграл. Неформально integral одной переменной можно ввести как площади под графика (фигуры, заключенной между графиком функции и осью абсцисс). Пытаясь найти эту площадь, можно рассматривать фигуры, состоящие из некоторого количества вертикальных прямоугольников, основания которых составляют вместе отрезок интегрирования и получаются при разбиении отрезка на соответствующее количество маленьких отрезков. Калькулятор решает интегралы c описанием действий подробно и бесплатно! Неопределённый интеграл онлайн для функции - это совокупность всех первообразных данной функции. Если функция определена и непрерывна на промежутке, то для нее есть первообразная функция (или семейство первообразных). Лучше тщательно подойти к этому делу и испытать внутреннее удовлетворение от проделанной работы. Но вычислить интеграл способ отличным от классического, порой приводит к неожиданным результатам и удивляться этому нельзя. Радует тот факт, который окажет положительный резонанс на происходящее. Список определенных интегралов и неопределенных интегралов с полным подробным пошаговым решением. Нахождение неопределенного интеграла онлайн является очень частой задачей в высшей математике и других технических разделах науки. Основные методы интегрирования. Задумайтесь о выполненных зданиях раньше, чем найдутся ошибки. Решение интегралов онлайн - вы получите подробное решение для разных типов интегралов: неопределённых, определённых, несобственных. Интеграл функции - аналог суммы последовательности. Неформально говоря, определённый интеграл является площадью части графика функции. Зачастую такой интеграл определяет, насколько тело тяжелее сравниваемого с ним объекта такой же плотности, и неважно, какой он формы, потому что поверхность не впитывает воду. Как найти интеграл онлайн знает каждый студент младших курсов. На базе школьной программы этот раздел математики также изучается, но не подробно, а лишь азы такой сложной и важной темы. В большинстве случаев студенты приступают к изучению интегралов с обширной теории, которой предшествуют тоже важные темы, такие как производная и предельные переходы - они же пределы. Решение интегралов постепенно начинается с самых элементарных примеров от простых функций, и завершается применением множества подходов и правил, предложенных еще в прошлом веке и даже намного раньше. Интегральное исчисление носит ознакомительный характер в лицеях и школах, то есть в средних учебных заведениях. Наш сайт сайт всегда поможет вам и решение интегралов онлайн станет для вас обыденным, а самое главное понятным занятием. На базе данного ресурса вы с легкостью сможете достичь совершенства в этом математическом разделе. Постигая шаг за шагом изучаемые правила, например, такие как интегрирование, по частям или применение метода Чебышева, вы с легкость решите на максимальное количество баллов любой тест. Так как же все-таки нам вычислить интеграл, применяя известную всем таблицу интегралов, но так, чтобы решение было правильным, корректным и с максимально возможным точным ответом? Как научиться этому и возможно ли это сделать обычному первокурснику в кратчайшие сроки? На этот вопрос ответим утвердительно - можно! При этом вы не только сможете решить любой пример, но и достигнете уровня высококлассного инженера. Секрет прост как никогда - необходимо приложить максимальное усилие, уделить необходимое количество времени на самоподготовку. К сожалению, еще никто не придумал иного способа! Но не все так облачно, как кажется на первый взгляд. Если вы обратитесь к нашему сервису сайт с данным вопросом, то мы облегчим вам жизнь, потому что наш сайт может вычислять интегралы онлайн подробно, при этом с очень высокой скоростью и безупречно точным ответом. По своей сути интеграл не определяет, как влияет отношение аргументов на устойчивость системы в целом. Механический смысл интеграла заключается во многих прикладных задачах, это и определение объема тел, и вычисление массы тела. Тройные и двойные интегралы участвуют как раз этих расчетах. Мы настаиваем на том, чтобы решение интегралов онлайн производилось только под наблюдением опытных преподавателей и через многочисленные проверки.. Нас спрашивают часто об успеваемости учеников, которые не посещают лекции, прогуливают их без причин, как же им удается найти интеграл самим. Мы отвечаем, что студенты народ свободный и вполне могут проходить обучение экстерном, готовясь к зачету или экзамену в комфортных домашних условиях. За считанные секунды наш сервис поможет каждому желающему вычислить интеграл от любой заданной функции по переменной. Проверить полученный результат следует взятием производной от первообразной функции. При этом константа от решения интеграла обращается в ноль. Это правило, очевидно, для всех. Существует не много таких сайтов, которые в считанные секунды выдают пошаговый ответ, а главное с высокой точностью и в удобном виде. Но не нужно забывать и о том, как имеется возможность найти интеграл с помощью готового сервиса, проверенного временем и испытанного на тысячах решенных примеров в режиме онлайн.

Определенный интеграл. Примеры решений

И снова здравствуйте. На данном уроке мы подробно разберем такую замечательную вещь, как определенный интеграл. На этот раз вступление будет кратким. Всё. Потому что снежная метель за окном.

Для того чтобы научиться решать определенные интегралы необходимо:

1) Уметь находить неопределенные интегралы.

2) Уметь вычислить определенный интеграл.

Как видите, для того чтобы освоить определенный интеграл, нужно достаточно хорошо ориентироваться в «обыкновенных» неопределенных интегралах. Поэтому если вы только-только начинаете погружаться в интегральное исчисление, и чайник еще совсем не закипел, то лучше начать с урока Неопределенный интеграл. Примеры решений . Кроме того, есть pdf-курсы для сверхбыстрой подготовки – если у вас в запасе буквально день, пол дня.

В общем виде определенный интеграл записывается так:

Что прибавилось по сравнению с неопределенным интегралом? Прибавились пределы интегрирования .

Нижний предел интегрирования
Верхний предел интегрирования стандартно обозначается буквой .
Отрезок называется отрезком интегрирования .

Прежде чем мы перейдем к практическим примерам, небольшое faq по определенному интегралу.

Что значит решить определенный интеграл? Решить определенный интеграл – это значит, найти число.

Как решить определенный интеграл? С помощью знакомой со школы формулы Ньютона-Лейбница :

Формулу лучше переписать на отдельный листочек, она должна быть перед глазами на протяжении всего урока.

Этапы решения определенного интеграла следующие:

1) Сначала находим первообразную функцию (неопределенный интеграл). Обратите внимание, что константа в определенном интеграле не добавляется . Обозначение является чисто техническим, и вертикальная палочка не несет никакого математического смысла, по сути – это просто отчёркивание. Зачем нужна сама запись ? Подготовка для применения формулы Ньютона-Лейбница.

2) Подставляем значение верхнего предела в первообразную функцию: .

3) Подставляем значение нижнего предела в первообразную функцию: .

4) Рассчитываем (без ошибок!) разность , то есть, находим число.

Всегда ли существует определенный интеграл? Нет, не всегда.

Например, интеграла не существует, поскольку отрезок интегрирования не входит в область определения подынтегральной функции (значения под квадратным корнем не могут быть отрицательными). А вот менее очевидный пример: . Здесь на отрезке интегрирования тангенс терпит бесконечные разрывы в точках , , и поэтому такого определённого интеграла тоже не существует. Кстати, кто еще не прочитал методический материал Графики и основные свойства элементарных функций – самое время сделать это сейчас. Будет здорово помогать на протяжении всего курса высшей математики.

Для того чтобы определенный интеграл вообще существовал, достаточно чтобы подынтегральная функция была непрерывной на отрезке интегрирования .

Из вышесказанного следует первая важная рекомендация: перед тем, как приступить к решению ЛЮБОГО определенного интеграла, нужно убедиться в том, что подынтегральная функция непрерывна на отрезке интегрирования . По студенческой молодости у меня неоднократно бывал казус, когда я подолгу мучался с нахождением трудной первообразной, а когда наконец-то ее находил, то ломал голову еще над одним вопросом: «что за ерунда получилась?». В упрощенном варианте ситуация выглядит примерно так:

???! Нельзя подставлять отрицательные числа под корень! Что за фигня?! Изначальная невнимательность.

Если для решения (в контрольной работе, на зачете, экзамене) Вам предложен интеграл вроде или , то нужно дать ответ, что данного определённого интеграла не существует и обосновать – почему.

! Примечание : в последнем случае слово «определённого» опускать нельзя, т.к. интеграл с точечными разрывами разбивается на несколько, в данном случае на 3 несобственных интеграла, и формулировка «данного интеграла не существует» становится некорректной.

Может ли определенный интеграл быть равен отрицательному числу? Может. И отрицательному числу. И нулю. Может даже получиться бесконечность, но это уже будет несобственный интеграл , коим отведена отдельная лекция.

Может ли нижний предел интегрирования быть больше верхнего предела интегрирования? Может, и такая ситуация реально встречается на практике.

– интеграл преспокойно вычисляется по формуле Ньютона-Лейбница.

Без чего не обходится высшая математика? Конечно же, без всевозможных свойств. Поэтому рассмотрим некоторые свойства определенного интеграла .

В определенном интеграле можно переставить верхний и нижний предел, сменив при этом знак :

Например, в определенном интеграле перед интегрированием целесообразно поменять пределы интегрирования на «привычный» порядок:

– в таком виде интегрировать значительно удобнее.

– это справедливо не только для двух, но и для любого количества функций.

В определенном интеграле можно проводить замену переменной интегрирования , правда, по сравнению с неопределенным интегралом тут есть своя специфика, о которой мы еще поговорим.

Для определенного интеграла справедлива формула интегрирования по частям :

Пример 1

Решение:

(1) Выносим константу за знак интеграла.

(2) Интегрируем по таблице с помощью самой популярной формулы . Появившуюся константу целесообразно отделить от и вынести за скобку. Делать это не обязательно, но желательно – зачем лишние вычисления?

. Сначала подставляем в верхний предел, затем – нижний предел. Проводим дальнейшие вычисления и получаем окончательный ответ.

Пример 2

Вычислить определенный интеграл

Это пример для самостоятельно решения, решение и ответ в конце урока.

Немного усложняем задачу:

Пример 3

Вычислить определенный интеграл

Решение:

(1) Используем свойства линейности определенного интеграла.

(2) Интегрируем по таблице, при этом все константы выносим – они не будут участвовать в подстановке верхнего и нижнего предела.

(3) Для каждого из трёх слагаемых применяем формулу Ньютона-Лейбница:

СЛАБОЕ ЗВЕНО в определенном интеграле – это ошибки вычислений и часто встречающаяся ПУТАНИЦА В ЗНАКАХ. Будьте внимательны! Особое внимание заостряю на третьем слагаемом: – первое место в хит-параде ошибок по невнимательности, очень часто машинально пишут (особенно, когда подстановка верхнего и нижнего предела проводится устно и не расписывается так подробно). Еще раз внимательно изучите вышерассмотренный пример.

Следует заметить, что рассмотренный способ решения определенного интеграла – не единственный. При определенном опыте, решение можно значительно сократить. Например, я сам привык решать подобные интегралы так:

Здесь я устно использовал правила линейности, устно проинтегрировал по таблице. У меня получилась всего одна скобка с отчёркиванием пределов: (в отличие от трёх скобок в первом способе). И в «целиковую» первообразную функцию, я сначала подставил сначала 4, затем –2, опять же выполнив все действия в уме.

Какие недостатки у короткого способа решения? Здесь всё не очень хорошо с точки зрения рациональности вычислений, но лично мне всё равно – обыкновенные дроби я считаю на калькуляторе.
Кроме того, существует повышенный риск допустить ошибку в вычислениях, таким образом, студенту-чайнику лучше использовать первый способ, при «моём» способе решения точно где-нибудь потеряется знак.

Однако несомненными преимуществами второго способа является быстрота решения, компактность записи и тот факт, что первообразная находится в одной скобке.

Совет: перед тем, как использовать формулу Ньютона-Лейбница, полезно провести проверку: а сама-то первообразная найдена правильно?

Так, применительно к рассматриваемому примеру: перед тем, как в первообразную функцию подставлять верхний и нижний пределы, желательно на черновике проверить, а правильно ли вообще найден неопределенный интеграл? Дифференцируем:

Получена исходная подынтегральная функция, значит, неопределенный интеграл найден верно. Теперь можно и формулу Ньютона-Лейбница применить.

Такая проверка будет не лишней при вычислении любого определенного интеграла .

Пример 4

Вычислить определенный интеграл

Это пример для самостоятельно решения. Попробуйте решить его коротким и подробным способом.

Замена переменной в определенном интеграле

Для определенного интеграла справедливы все типы замен, что и для неопределенного интеграла. Таким образом, если с заменами у Вас не очень, следует внимательно ознакомиться с уроком Метод замены в неопределенном интеграле .

В этом параграфе нет ничего страшного или сложного. Новизна состоит в вопросе, как поменять пределы интегрирования при замене .

В примерах я постараюсь привести такие типы замен, которые еще нигде не встречались на сайте.

Пример 5

Вычислить определенный интеграл

Главный вопрос здесь вовсе не в определенном интеграле, а в том, как правильно провести замену. Смотрим в таблицу интегралов и прикидываем, на что у нас больше всего похожа подынтегральная функция? Очевидно, что на длинный логарифм: . Но есть одна неувязочка, в табличном интеграле под корнем , а в нашем – «икс» в четвёртой степени. Из рассуждений следует и идея замены – неплохо бы нашу четвертую степень как-нибудь превратить в квадрат. Это реально.

Сначала готовим наш интеграл к замене:

Из вышеуказанных соображений совершенно естественно напрашивается замена:
Таким образом, в знаменателе будет всё хорошо: .
Выясняем, во что превратится оставшаяся часть подынтегрального выражения, для этого находим дифференциал :

По сравнению с заменой в неопределенном интеграле у нас добавляется дополнительный этап.

Находим новые пределы интегрирования .

Это достаточно просто. Смотрим на нашу замену и старые пределы интегрирования , .

Сначала подставляем в выражение замены нижний предел интегрирования, то есть, ноль:

Потом подставляем в выражение замены верхний предел интегрирования, то есть, корень из трёх:

Готово. И всего-то лишь…

Продолжаем решение.

(1) В соответствии с заменой записываем новый интеграл с новыми пределами интегрирования .

(2) Это простейший табличный интеграл, интегрируем по таблице. Константу лучше оставить за скобками (можно этого и не делать), чтобы она не мешалась в дальнейших вычислениях. Справа отчеркиваем линию с указанием новых пределов интегрирования – это подготовка для применения формулы Ньютона-Лейбница.

(3) Используем формулу Ньютона-Лейбница .

Ответ стремимся записать в максимально компактном виде, здесь я использовал свойства логарифмов.

Ещё одно отличие от неопределенного интеграла состоит в том, что, после того, как мы провели замену, никаких обратных замен проводить не надо .

А сейчас пара примеров для самостоятельного решения. Какие замены проводить – постарайтесь догадаться самостоятельно.

Пример 6

Вычислить определенный интеграл

Пример 7

Вычислить определенный интеграл

Это примеры для самостоятельного решения. Решения и ответы в конце урока.

И в заключение параграфа пара важных моментов, разбор которых появился благодаря посетителям сайта. Первый из них касается правомерности замены . В некоторых случаях её проводить нельзя! Так, Пример 6, казалось бы, разрешим с помощью универсальной тригонометрической подстановки , однако верхний предел интегрирования («пи») не входит в область определения этого тангенса и поэтому данная подстановка нелегальна! Таким образом, функция-«замена» должна быть непрерывна во всех точках отрезка интегрирования .

В другом электронном письме поступил следующий вопрос: «А нужно ли менять пределы интегрирования, когда мы подводим функцию под знак дифференциала?». Сначала я хотел «отмахнуться от ерунды» и автоматически ответить «конечно, нет», но затем задумался о причине появления такого вопроса и вдруг обнаружил, что информации-то не хватает. А ведь она, пусть и очевидна, но очень важнА:

Если мы подводим функцию под знак дифференциала, то менять пределы интегрирования не нужно ! Почему? Потому что в этом случае нет фактического перехода к новой переменной . Например:

И здесь подведение гораздо удобнее академичной замены с последующей «росписью» новых пределов интегрирования. Таким образом, если определённый интеграл не очень сложен, то всегда старайтесь подвести функцию под знак дифференциала ! Это быстрее, это компактнее, и это обыденно – в чём вы убедитесь ещё десятки раз!

Большое спасибо за ваши письма!

Метод интегрирования по частям в определенном интеграле

Здесь новизны еще меньше. Все выкладки статьи Интегрирование по частям в неопределенном интеграле в полной мере справедливы и для определенного интеграла.
Плюсом идёт только одна деталь, в формуле интегрирования по частям добавляются пределы интегрирования:

Формулу Ньютона-Лейбница здесь необходимо применить дважды: для произведения и, после того, как мы возьмем интеграл .

Тип интеграла для примера я опять подобрал такой, который еще нигде не встречался на сайте. Пример не самый простой, но очень и очень познавательный.

Пример 8

Вычислить определенный интеграл

Решаем.

Интегрируем по частям:

У кого возникли трудности с интегралом , загляните на урок Интегралы от тригонометрических функций , там он подробно разобран.

(1) Записываем решение в соответствии с формулой интегрирования по частям.

(2) Для произведения применяем формулу Ньютона-Лейбница. Для оставшегося интеграла используем свойства линейности, разделяя его на два интеграла. Не путаемся в знаках!

(4) Применяем формулу Ньютона-Лейбница для двух найденных первообразных.

Если честно, я недолюбливаю формулу и, по возможности, … обхожусь вообще без нее! Рассмотрим второй способ решения, с моей точки зрения он более рационален.

Вычислить определенный интеграл

На первом этапе я нахожу неопределенный интеграл :

Интегрируем по частям:


Первообразная функция найдена. Константу в данном случае добавлять не имеет смысла.

В чём преимущество такого похода? Не нужно «таскать за собой» пределы интегрирования, действительно, замучаться можно десяток раз записывать мелкие значки пределов интегрирования

На втором этапе я провожу проверку (обычно на черновике).

Тоже логично. Если я неправильно нашел первообразную функцию, то неправильно решу и определенный интеграл. Это лучше выяснить немедленно, дифференцируем ответ:

Получена исходная подынтегральная функция, значит, первообразная функция найдена верно.

Третий этап – применение формулы Ньютона-Лейбница :

И здесь есть существенная выгода! В «моём» способе решения гораздо меньший риск запутаться в подстановках и вычислениях – формула Ньютона-Лейбница применяется всего лишь один раз. Если чайник решит подобный интеграл по формуле (первым способом), то стопудово где-нибудь допустит ошибку.

Рассмотренный алгоритм решения можно применить для любого определенного интеграла .

Уважаемый студент, распечатай и сохрани:

Что делать, если дан определенный интеграл, который кажется сложным или не сразу понятно, как его решать?

1) Сначала находим неопределенный интеграл (первообразную функцию). Если на первом же этапе случился облом, дальше рыпаться с Ньютоном и Лейбницем бессмысленно. Путь только один – повышать свой уровень знаний и навыков в решении неопределенных интегралов .

2) Проверяем найденную первообразную функцию дифференцированием . Если она найдена неверно, третий шаг будет напрасной тратой времени.

3) Используем формулу Ньютона-Лейбница. Все вычисления проводим ПРЕДЕЛЬНО ВНИМАТЕЛЬНО – тут самое слабое звено задания.

И, на закуску, интеграл для самостоятельного решения.

Пример 9

Вычислить определенный интеграл

Решение и ответ где-то рядом.

Следующий рекомендуемый урок по теме – Как вычислить площадь фигуры с помощью определенного интеграла?
Интегрируем по частям:


Вы точно их прорешали и получили такие ответы? ;-) И на старуху бывает порнуха.

Для решения упражнений по теме «Интегрирование» рекомендуется следующая литература:

1. . Математический анализ. Неопределённый интеграл. Определённый интеграл: учебное пособие . – М.: МГИУ, 2006. – 114 с.: ил. 20.

2. , и др. Задачи и упражнения по математическому анализу для втузов/Под ред. . (любой год издания).

Семинар №1.

Нахождение неопределённых интегралов с помощью основных правил интегрирования и таблицы неопределённых интегралов.

https://pandia.ru/text/78/291/images/image002_164.gif" width="113 height=27" height="27">, то,

где С – произвольная постоянная,

2) , где k – постоянная величина,

4) .

https://pandia.ru/text/78/291/images/image008_45.gif" width="24" height="28 src="> Под знаком интеграла стоит произведение двух постоянных, которое есть, естественно, тоже постоянная. Согласно основному правилу интегрирования 2), выносим её за знак интеграла.

(2) Используем формулу 1) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image010_36.gif" width="569" height="44 src=">.gif" width="481" height="75 src=">

https://pandia.ru/text/78/291/images/image014_25.gif" width="255" height="32 src=">. В нашем случае , https://pandia.ru/text/78/291/images/image017_22.gif" width="75 height=47" height="47">, то .

(3) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(4) Пользуемся формулой 1) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е.

.

https://pandia.ru/text/78/291/images/image022_9.gif" width="551" height="91 src=">

https://pandia.ru/text/78/291/images/image024_8.gif" width="449" height="101 src=">.

(1) Воспользуемся формулой сокращённого умножения

https://pandia.ru/text/78/291/images/image026_7.gif" width="103" height="37 src=">).

(2) Пользуемся свойством степеней ().

(4) В каждом из слагаемых под знаком интеграла пользуемся свойством степеней (https://pandia.ru/text/78/291/images/image029_7.gif" width="325" height="56 src=">.

(1) Поменяем два слагаемых местами в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 6) Таблицы интегралов..gif" width="364 height=61" height="61">.

(1) Поменяем два слагаемых местами под знаком корня в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 11) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image033_5.gif" width="625" height="75 src=">

https://pandia.ru/text/78/291/images/image035_5.gif" width="459" height="67 src=">

https://pandia.ru/text/78/291/images/image037_5.gif" width="535" height="67 src=">

(1) Подставляем .

(2) Из основного тригонометрического тождества имеем .

(3) Почленно делим каждое слагаемое числителя на знаменатель.

(4) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(5) Пользуемся формулой 15) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е. .

Упражнения. №№ 000, 1034, 1036, 1038, 1040, 1042, 1044, 1046, 1048(а) из задачника .

Семинар №2

Интегрирование методом замены переменной

Если интеграл не является табличным, то часто используют замену переменной, а именно, полагая https://pandia.ru/text/78/291/images/image044_5.gif" width="39" height="27 src="> - непрерывно дифференцируемая функция. Подставляя в интеграл, будем иметь

Функцию https://pandia.ru/text/78/291/images/image043_5.gif" width="71" height="27"> получаем и подставляем в первообразную, зависящую от переменной t , получая в итоге первообразную зависящую от первоначальной переменной x , т. е. возвращаемся к старой переменной. Возвращаться к старой переменной следует обязательно!

В этом примере уже указана замена переменной .

https://pandia.ru/text/78/291/images/image049_5.gif" width="525" height="115 src=">

https://pandia.ru/text/78/291/images/image051_3.gif" width="408" height="83 src=">

https://pandia.ru/text/78/291/images/image053_3.gif" width="256 height=67" height="67">, так как .

При подстановке имеем .

(2) Умножаем числитель и знаменатель на .

(3) Этот интеграл «похож» на табличные 9) и 10), но заметим, что в том и другом коэффициент при квадрате неизвестного равен 1. Поэтому под корнем выносим коэффициент при за скобки.

(4) Пользуемся свойством корня квадратного из произведения двух положительных сомножителей: если и , то .

(5) Выделяем под знаком интеграла множитель.

(6) Выносим этот множитель за знак интеграла, согласно Основному правилу 2) интегрирования.

(7) Согласно формуле 10) Таблицы неопределённых интегралов получаем ответ, зависящий от переменной . Здесь , .

(8) Возвращаемся к старой переменной, проводя обратную замену, т. е..gif" width="611" height="115 src="> =

https://pandia.ru/text/78/291/images/image067_2.gif" width="47" height="21"> имеем , для нашего примера .

(2) Пользуемся основным логарифмическим тождеством: https://pandia.ru/text/78/291/images/image071_2.gif" width="111 height=32" height="32">.

(3) Приводим к общему знаменателю выражение, стоящее в знаменателе.

(4) Умножаем числитель и знаменатель подынтегрального выражения на https://pandia.ru/text/78/291/images/image072_2.gif" width="581" height="53 src=">

https://pandia.ru/text/78/291/images/image074_2.gif" width="179" height="53 src=">. Запомним это на будущее.

В этом примере также замена переменной уже указана.

https://pandia.ru/text/78/291/images/image076_2.gif" width="621" height="64 src=">.

Очень часто бывает целесообразно попробовать замену , если выражение имеется под знаком интеграла или замену https://pandia.ru/text/78/291/images/image080_2.gif" width="80" height="33">где - некоторое целое положительное число Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциала .

Если подынтегральная функция зависит от выражения , то можно дать некоторые рекомендации по замене переменной.

https://pandia.ru/text/78/291/images/image085.jpg" width="600" height="372 src=">

https://pandia.ru/text/78/291/images/image087_2.gif" width="557" height="68 src=">

https://pandia.ru/text/78/291/images/image089_2.gif" width="343" height="64 src=">

https://pandia.ru/text/78/291/images/image091_2.gif" width="591" height="101 src=">

https://pandia.ru/text/78/291/images/image093_2.gif" width="597" height="101 src=">

https://pandia.ru/text/78/291/images/image095_2.gif" width="113" height="27">..gif" width="108" height="27 src=">.

В самом деле,

https://pandia.ru/text/78/291/images/image099_2.gif" width="125" height="27 src=">

То есть в случае, когда подынтегральная функция имеет вид https://pandia.ru/text/78/291/images/image100_2.gif" width="48" height="27"> под знак дифференциала:

https://pandia.ru/text/78/291/images/image102_2.gif" width="292" height="29 src=">. Далее делаем замену переменной .

Такого рода преобразование иногда называют «подведение под знак дифференциала».

Прежде чем разбирать примеры на эту тему, приведём таблицу, которую можно получить из таблицы неопределённых интегралов

https://pandia.ru/text/78/291/images/image105_1.gif" width="96" height="53 src=">.gif" width="135" height="53 src=">,

https://pandia.ru/text/78/291/images/image109_1.gif" width="147" height="55 src=">,

https://pandia.ru/text/78/291/images/image111_1.gif" width="172" height="60 src=">,

https://pandia.ru/text/78/291/images/image113_1.gif" width="155" height="23 src=">,

https://pandia.ru/text/78/291/images/image115_1.gif" width="128" height="55 src=">,

https://pandia.ru/text/78/291/images/image117_1.gif" width="209" height="53 src=">,

https://pandia.ru/text/78/291/images/image119_1.gif" width="215" height="53 src="> и т. д.

https://pandia.ru/text/78/291/images/image121_1.gif" width="393" height="48 src=">.

https://pandia.ru/text/78/291/images/image123_1.gif" width="587" height="101 src=">

https://pandia.ru/text/78/291/images/image125_1.gif" width="155" height="27">, то целесообразна замена . Тогда имеем

https://pandia.ru/text/78/291/images/image128_1.gif" width="592" height="88 src=">=

.

https://pandia.ru/text/78/291/images/image133_1.gif" width="560" height="60 src=">

.

https://pandia.ru/text/78/291/images/image136_1.gif" width="560" height="59 src=">.

Упражнения №№ 000, 1088, 1151, 1081, 1082, 1094.

Семинар №4

Метод интегрирования по частям в неопределённом интеграле

Этот метод основан на следующей теореме.

Теорема. Пусть функции и имеют конечные производные в промежутке , и в этом промежутке существует первообразная для функции. Тогда в промежутке существует первообразная для функции и справедлива формула

Эту формулу можно записать в виде

.

Задача при интегрировании по частям заключается в том, чтобы подынтегральное выражение представить в виде произведения так, чтобы интеграл был проще, чем , т. е. нельзя выбирать и произвольно, так как можно получить более сложный интеграл https://pandia.ru/text/78/291/images/image149_1.gif" width="45 height=29" height="29">.

Практика показывает, что большая часть интегралов «берущихся» по частям может быть разбита на три группы:

https://pandia.ru/text/78/291/images/image151.jpg" width="636" height="396 src=">

Эти интегралы находятся двукратным интегрированием по частям.

Замечание . В первой группе интегралов для интегралов вместо может быть многочлен зависящий от необязательно целой положительной степени (например https://pandia.ru/text/78/291/images/image156_0.gif" width="33" height="28 src=">.gif" width="35" height="45 src="> и т. д.).

В этом примере разбиение на множители и единственно возможное, что бывает не очень часто.

При нахождении выражения для в методе интегрирования по частям постоянную C можно положить равной нулю (см. стр.22).

https://pandia.ru/text/78/291/images/image163_0.gif" width="552" height="57 src=">

https://pandia.ru/text/78/291/images/image165_0.gif" width="623" height="176 src=">

https://pandia.ru/text/78/291/images/image167_0.gif" width="512" height="53 src=">

https://pandia.ru/text/78/291/images/image169_0.gif" width="25" height="23"> можно представить как ..gif" width="93" height="53 src=">.

https://pandia.ru/text/78/291/images/image174_0.gif" width="503" height="33 src=">.

Это пример также из второй группы интегралов.

https://pandia.ru/text/78/291/images/image176_0.gif" width="591" height="72 src=">

https://pandia.ru/text/78/291/images/image178_0.gif" width="197" height="28 src=">.

Таким образом, получаем уравнение относительно искомого интеграла https://pandia.ru/text/78/291/images/image180_0.gif" width="212 height=28" height="28">.

Переносим слагаемое в левую часть уравнения и получаем эквивалентное уравнение

решая которое, получаем ответ:

.

Этот пример из третьей группы интегралов. Здесь мы дважды применили интегрирование по частям.

Упражнения. №№ 000, 1214, 1226, 1221, 1217, 1218, 1225, 1223,

Семинар №5

Вычисление определённых интегралов

Вычисление определённых интегралов основано на свойствах определённого интеграла и формуле Ньютона-Лейбница.

Приведём основные свойства определённого интеграла

1) Каковы бы ни были числа a , b , c всегда имеет место равенство

https://pandia.ru/text/78/291/images/image185_0.gif" width="188" height="61 src=">.

3) Определённый интеграл от алгебраической суммы двух (конечного числа) функций равен алгебраической сумме их интегралов, т. е.

https://pandia.ru/text/78/291/images/image187_0.gif" width="47" height="27 src="> есть некоторая первообразная от непрерывной функции , то справедлива формула

.

Вычисление определённого интеграла как предела интегральных сумм – достаточно трудоёмкое дело даже для элементарных функций. Формула Ньютона-Лейбница позволяет свести вычисление определённого интеграла к нахождению неопределённого интеграла, когда известна первообразная подынтегральной функции. Значение определённого интеграла равно разности значений первообразной на верхнем и нижнем пределе интегрирования.

Примеры вычисления определённого интеграла в простейших случаях

https://pandia.ru/text/78/291/images/image191_0.gif" width="28" height="71 src=">.gif" width="387" height="61 src=">.gif" width="40" height="28 src=">.gif" width="41" height="21 src=">.gif" width="541" height="67 src=">

https://pandia.ru/text/78/291/images/image199.jpg" width="600" height="145 src=">

.

При использовании метода замены переменной в определённом интеграле надо иметь в виду два момента.

https://pandia.ru/text/78/291/images/image202.jpg" width="648" height="60 src=">

https://pandia.ru/text/78/291/images/image204.gif" width="319" height="61 src=">.gif" width="89" height="32 src=">.gif" width="525" height="28 src=">.

Интегрирование по частям в определённом интеграле

При использовании формулы интегрирования по частям в определённом интеграле иногда оказывается, например, что , поэтому сразу же следует вычислять выражение , не откладывая это до тех пор, пока не будет найдена вся первообразная.

https://pandia.ru/text/78/291/images/image213.gif" width="29" height="91 src=">.gif" width="221" height="53 src=">.gif" width="365" height="59 src=">.

Упражнения . №№ 000, 1522, 1525, 1531, 1583, 1600,1602.

Семинар № 6

Несобственные интегралы

Несобственные интегралы первого рода

Несобственные интегралы первого рода – это интегралы с бесконечными пределами (или одним бесконечным пределом). Это интегралы вида , , . Пусть функция интегрируема на любом конечном отрезке, заключённом внутри промежутка интегрирования. Тогда, по определению

https://pandia.ru/text/78/291/images/image222.gif" width="227 height=60" height="60">.gif" width="235 height=76" height="76">.

Если приведённые пределы существуют и конечны, то говорят, что несобственные интегралы сходятся. Если не существуют или бесконечны, то говорят, что расходятся (подробнее см. стр.72-76).

https://pandia.ru/text/78/291/images/image226.gif" width="47" height="21 src="> имеем

https://pandia.ru/text/78/291/images/image228.gif" width="31" height="71 src=">.gif" width="191" height="88 src=">

Если https://pandia.ru/text/78/291/images/image232.gif" width="188" height="60 src=">.gif" width="199" height="43 src=">.

Таким образом, данный интеграл сходится при и расходится при.

Исследовать на сходимость несобственный интеграл

https://pandia.ru/text/78/291/images/image239.gif" width="31" height="71 src=">=

https://pandia.ru/text/78/291/images/image241.gif" width="417" height="56 src=">,

Исследовать на сходимость несобственный интеграл

.

https://pandia.ru/text/78/291/images/image244.gif" width="303" height="61">.gif" width="523" height="59 src=">,

т. е. данный несобственный интеграл сходится.

Процесс решения интегралов в науке под названием "математика" называется интегрированием. С помощью интегрирования можно находить некоторые физические величины: площадь, объем, массу тел и многое другое.

Интегралы бывают неопределенными и определенными. Рассмотрим вид определенного интеграла и попытаемся понять его физический смысл. Представляется он в таком виде: $$ \int ^a _b f(x) dx $$. Отличительная черта написание определенного интеграла от неопределенного в том, что есть пределы интегрирования a и b. Сейчас узнаем для чего они нужны, и что всё-таки значит определенный интеграл. В геометрическом смысле такой интеграл равен площади фигуры, ограниченной кривой f(x), линиями a и b, и осью Ох.

Из рис.1 видно, что определенный интеграл - это и есть та самая площадь, что закрашена серым цветом. Давайте, проверим это на простейшем примере. Найдем площадь фигуры на изображении представленном ниже с помощью интегрирования, а затем вычислим её обычным способом умножения длины на ширину.

Из рис.2 видно, что $ y=f(x)=3 $, $ a=1, b=2 $. Теперь подставим их в определение интеграла, получаем, что $$ S=\int _a ^b f(x) dx = \int _1 ^2 3 dx = $$ $$ =(3x) \Big|_1 ^2=(3 \cdot 2)-(3 \cdot 1)=$$ $$=6-3=3 \text{ед}^2 $$ Сделаем проверку обычным способом. В нашем случае длина = 3, ширина фигуры = 1. $$ S = \text{длина} \cdot \text{ширина} = 3 \cdot 1 = 3 \text{ед}^2 $$ Как видим, всё отлично совпало.

Появляется вопрос: как решать интегралы неопределенные и какой у них смысл? Решение таких интегралов - это нахождение первообразных функций. Этот процесс противоположный нахождению производной. Для того, чтобы найти первообразную можно использовать нашу помощь в решении задач по математике или же необходимо самостоятельно безошибочно вызубрить свойства интегралов и таблицу интегрирования простейших элементарных функций. Нахождение выглядит так $$ \int f(x) dx = F(x) + C \text{где} F(x) $ - первообразная $ f(x), C = const $.

Для решения интеграла нужно интегрировать функцию $ f(x) $ по переменной. Если функция табличная, то записывается ответ в подходящем виде. Если же нет, то процесс сводится к получению табличной функции из функции $ f(x) $ путем хитрых математических преобразований. Для этого есть различные методы и свойства, которые рассмотрим далее.

Итак, теперь составим алгоритм как решать интегралы для чайников?

Алгоритм вычисления интегралов

  1. Узнаем определенный интеграл или нет.
  2. Если неопределенный, то нужно найти первообразную функцию $ F(x) $ от подынтегральной $ f(x) $ с помощью математических преобразований приводящих к табличному виду функцию $ f(x) $.
  3. Если определенный, то нужно выполнить шаг 2, а затем подставить пределы $ а $ и $ b $ в первообразную функцию $ F(x) $. По какой формуле это сделать узнаете в статье "Формула Ньютона Лейбница".

Примеры решений

Итак, вы узнали как решать интегралы для чайников, примеры решения интегралов разобрали по полочкам. Узнали физический и геометрический их смысл. О методах решения будет изложено в других статьях.