Технология сети Token-Ring. Сетевая технология token ring Технология токен ринг

Token Ring технология (маркерное кольцо) была разработана фирмой IBM в конце 1970-х годов. Спецификации IEEE 802.5 практически повторяют фирменные спецификации, отличаясь лишь в некоторых деталях (например, IEEE 802.5 не оговаривает среду передачи и топологию сети, а фирменный стандарт определяет крученную вару как среду и звезду как физическая топология).

Сети Token Ring могут работать на одной из двух битовых скоростей: 4 Мбит/с (IEEE 802.5) или 16 Мбит/с (IEEE 802.5r). В одном кольце могут быть присутствует только станции, которые работают на одной скорости.

Token Ring определяет логическую топологию “кольцо”: каждая станция связана с двумя соседними. Физически же станции соединяются в звездообразную сеть, в центре которой находится устройство многостанционного доступа (MSAU, Multi-Station Access Unit), в сущности являются повторителем. Как правило, MSAU умеет исключать неработающую станцию из кольца (для этого используется шунтирующее реле). MSAU имеют также отдельные разъемы для объединения нескольких MSAU в одно большое кольцо.

Максимальное количество станций в кольце – 250 (IEEE 802.5), 260 (IBM Token Ring, кабель STP) и 72 (IBM Token Ring, кабель UTP).
Максимальная длина кольца Token Ring составляет 4000 м.

В конце 1990-х годов компанией IBM разработан новый вариант технологии Token Ring – High Speed Token Ring (HSTR), что поддерживает скорости в 100 и 155 Мбит/с. Ведутся разработки версии Token Ring со скоростью в 1 Гбит/с.

Маркерный метод доступа

Token Ring – это самая распространенная технология локальной сети с передачей маркера. В таких сетях циркулирует (передается станциями друг другу в определенном порядке) специальный блок данных – маркер (token). Станция, которая приняла маркер, имеет право передавать свои данные. Для этого она изменяет в маркере один бит (“маркер занят”), добавляет к нему свои данные и передает в сеть (следующие станции). Станции передают такой кадр далее по кольце, пока он не достигнет получателя, который скопирует из него данные и передаст дальше. Когда отправитель получает свой кадр с данными, который сделал полный круг, он его отбрасывает и или передает новый кадр данных (если не минуло максимальное время владения маркером), или изменяет бит занятости маркера на “свободный” и передает маркер далее по кольце.

В течение всего времени владения маркером, к и после передачи своего кадра, станция должна выдавать последовательность, которая заполняет (fill sequence), - произвольную последовательность 0 и 1. Это делается для поддержки синхронизации и контроля за обрывом кольца.

Основной режим работы адаптера - повторение: передатчик побитно выдает данные, которые поступили к приемнику. Когда в станции есть кадр для передачи и принят свободный маркер, станция переходит в режим передачи, при этом битовый поток, который поступает через приемник, анализируется на служебные кадры и или (если обнаружен служебный кадр) инициирующее прерывание (прекращение передачи своего кадра и выдача кадра прерывания), или приняты данные отбрасываются.

В сетях Token Ring 4 Мбит/со станция освобождала маркер только по возвращении ее кадра данных. Сети Token Ring 16 Мбит/с используют алгоритм раннего освобождения маркера (Early Token Release): маркер передается в кольцо сразу по окончании передачи кадру данных. При этом по кольцу одновременно передается несколько кадров данных, но генерировать их в каждый момент времени может только одна станция, которая владеет в этот момент маркером.

За правильной работой сети следит активный монитор (Active Monitor, AM), избираемый во время инициализации кольца как станция с максимальным MAC-адресою. В случае отказа активного монитора, проводятся выборы нового (все станции в сети, кроме активного монитора, считаются резервными мониторами (Standby monitor)). Основная функция активного монитора – контроль наличия единственного маркера в кольце. Монитор выпускает в кольцо маркер и удаляет кадры, которые прошли больше одного оборота по кольцу. Чтобы сообщить другие станции о себе, активный монитор периодически передает служебный кадр AMP. Если за время какой-то (достаточный для оборота маркера по кольцу) маркер не вернется к активному монитору, маркер считается затерянным, и активный монитор генерирует новый маркер.

На режим передачи кадров влияют отмеченные в стандарте максимальные интервалы времени, за соблюдением которых следят специальные таймеры в сетевых адаптерах (приведены значения за умалчиванием, администратор сети может их изменять):

  1. время содержания маркера (Token Holding, THT) – 8,9 мс; по окончании этого интервала станция должна прекратить передачу своих данных (текущий кадр можно передать) и освободить маркер; за время содержания маркера станция может передать несколько (небольших) кадров;
  2. допустимое время передачи кадру (Valid Transmission, TVX) – 10 мс; максимальное время, в которое должна заключиться передача одного кадра; контролируется активным монитором;
  3. время ожидания свободного маркера (No Token, TNT) – 2,6 с; время ожидания свободного маркера активным монитором; если за это время маркер не появится, активный монитор выполняет очистку кольца и генерирует новый маркер;
  4. период посылки AMP (Active Monitor, TAM) – 7 с;
  5. время ожидания AMP (Standby Monitor Detect AMP, TSM) – 16 с; если за этот интервал не было ни одного кадра AMP, инициирующие выборы нового активного монитора.

Форматы кадров Token Ring

Token Ring определяет три типа кадров: маркер, кадр данных (служебных или пользовательских) и прерывания.

Кадр данных

Прерывание

Рис.8.1. Форматы кадров Token Ring

Поле SD (Starting Delimiter, начальное ограничение) указывает на начало кадра и имеет значение JK0JK000 в манчестерском коде. Поскольку в поле присутствуют специальных кодов J и K, последовательность данных нельзя попутать с ограничением кадру.

Поле ED (Ending Delimiter, конечное ограничение) имеет значение JK1JK1IE, где бит I (Intermediate, промежуточный) указывает, является ли кадр промежуточным в последовательности кадров (I=1) или останнім/єдиним (I=0), а бит E (Error, ошибка) указывает на обнаруженную ошибку (E=1).

Поле AC (Access Control, управление доступом) имеет формат PPPTMRRR, где биты PPP (Priority, приоритет) содержат приоритет маркера, бит T (Token, маркер) отличает свободный маркер (T=1) от кадра данных (T=0), бит M (Monitor, монитор) используется для распознавания кадров, которые сделали больше одного оборота по кольцу: монитор устанавливает M=1 во всех проходящих через него кадрах (другие станции устанавливают M=0), а кадры из M=1 должны удаляться монитором. Биты RRR (Priority reservation, резервирование) несут приоритет станции, которая желает захватить маркер.

Поле FC (Frame Control, управление кадром) имеет формат FFZZZZZZ. Биты FF определяют тип кадра:

  1. 00 – кадр данных со служебной информацией (MAC-кадр);
  2. 01 – кадр данных пользователя (LLC-кадр);
  3. 10, 11 - резерв.

Биты ZZZZZZ используются LLC-кадрами для хранения информации о приоритете кадра уровня LLC. MAC-кадри в этих битах хранят свой тип. IEEE 802.5 определяет 25 типов MAC-кадрів, среди которых основные:

  1. CT (Claim Token, заявка на создание маркера) – отправляется резервным монитором при подозрении об отказе активного монитора;
  2. DAT (Duplicate Address Test, тест на дублирование адреса) – отправляется станцией при подключении к кольцу для проверки уникальности своего адреса;
  3. AMP (Active Monitor Present, является присутствует активный монитор) – регулярно (раз в 7 с) отправляется активным монитором для подтверждения своего присутствия;
  4. SMP (Standby Monitor Present, является присутствует резервный монитор) – ответ на кадр AMP;
  5. BCN (Beacon, бакен) – отправляется станцией, которая обнаружила сетевую проблему (тишину или бесконечный поток, который может указывать на обрыв кабеля, наличие неисправного адаптера у одной из станций и тому подобное);
  6. PRG (Purge, очистка) – сигнал от активного монитора об очистке кольца от всех кадров.

Поле DA (Destination Address, адрес назначения) имеет структуру, подобную структуре адреса в стандарте IEEE 802.3. Старший бит адреса определяет получателя: 0 - индивидуальный (одна станция), 1 - групповой. Второй бит адреса определяет способ назначения адреса: 0 - глобально (универсально, зашито в ПЗП адаптера), 1 - локально. Другие биты используются для указания адреса станции, кольца или группы получателей. Несколько адресов зарезервировано для служебных целей:
FF FF FF FF FF FF – широковещательный кадр (всем станциям)
C0 00 FF FF FF FF – широковещательный MAC-кадр
C0 00 00 00 00 01 – активный монитор
C0 00 00 00 00 02 – сервер параметров кольца
C0 00 00 00 00 08 – монитор ошибок кольца
C0 00 00 00 00 10 – сервер отчетов о конфигурации
C0 00 00 00 01 00 – мост
C0 00 00 00 20 00 – управление сетью.

Поле SA (Source Address, адрес источника) имеет тот же формат, что и адрес назначения, за исключением старшего бита. В адресе источника старший бит называется RII (Routing Information Indicator) и указывает (если RII=1) на наличие данных в поле RI.

Поле RI (Routing Information, маршрутная информация), если используется (RII=1), содержит последовательность (двохбайтних) адресов сегментов на пути к получателю. Данные этого поля управляют работой мостов в режиме маршрутизации от источника.

Поле Info содержит или данные пользователя (кадр LLC), или служебные данные, обусловленные типом кадра (кадр MAC). Стандарт не ограничивает размер этого поля, хотя практически его максимальный размер определяется соотношением времен передачи кадру и содержания маркера. Для 4 Мбит/с максимальный размер кадра обычно устанавливается в 4 Кбайт, а для 16 Мбит/с - в 16 Кбайт. Минимальный размер поля данные не определенный.

Поле FCS (Frame Check Sequence, контрольная сумма) хранит 4-байтный CRC-код для всех полей из FC по Info включительно.

Поле FS (Frame Status, статус кадра) имеет формат AСrrACrr. Биты rr зарезервированы и не используются, другие биты дублируются для надежности. Бит A (Address Recognized, адрес распознан) указывает на то, что получатель кадра присутствует в кольце, а бит C (Frame Copied, кадр скопирован) указывает на то, что приемник скопировал кадр себе в буфер. По этим полям станция-отправитель может узнать, что передан ею кадр был получен.

Система приоритетного доступа

Сети Token Ring гарантируют, что каждая станция будет получать право на передачу данных не реже, чем раз в установленный интервал времени. Кроме того, используется система приоритетов, что позволяет некоторым станциям пользоваться сетью чаще других. Для этого в кадре Token Ring выделены два поля: полет приоритету и полет резервирование. Всего уровней приоритета восемь: от более низкого (0) к более высокому (7). Маркер тоже всегда имеет некоторый уровень приоритета. Станция может захватить маркер только в том случае, если приоритет кадра, что она собирается передать, не ниже приоритету маркера (битов PPP поля AC).
Станция, которая захватила маркер, хранит старое значение его приоритета, записывает у него приоритет своего кадра и обнуляет поле резервирования. Если в кольце есть станция, которая желает передать кадр из больше высоким приоритетом, то она записывает приоритет своего кадра в поле резервирования проходящего по кольцу кадра, в результате чего после оборота по кольцу в поле резервирования будет записан максимальный приоритет из кадров, которые ожидают передачи. Тогда станция переписывает приоритет из поля резервирования в поле приоритета маркера и выдает свободный маркер в кольцо (захватить такой маркер сможет только станция с кадром отмеченного приоритета).

Станция, которая повышает приоритет маркера, становится запоминающей станцией (stacking station) и организует стек для хранения еще необслуживаемых низких приоритетов. Когда через такую станцию проходит свободный маркер с приоритетом, ровным приоритету на верхушке стека, она вытягивает следующее значение из стека и снижает приоритет маркера к нему.

Механизм приоритетов в сетях Token Ring не является обязательным к использованию. Как правило, большинство дополнений им не пользуется, и кольцо работает в неприоритетном режиме (приоритет маркера всегда равняется 0). Существует тенденция к переносу механизмов приоритетного обслуживания на уровне, выше канального (приоритетное обслуживание могут обеспечивать, например, маршрутизаторы).

При построении больших сетей Тoken Ring придется использовать большое количество колец. Отдельные кольца связываются один с одним, как и в других сетях, с помощью мостов. Мосты бывают "прозрачными" (IEEE 802.1d) и с маршрутизацией от источника. Последние позволяют связать в единственную сеть несколько колец, которые используют общую сетевую IPX- или IP-адресу.

Использование мостов позволяет перебороть и ограничение на число станций в сети (260 для спецификации IBM и 250 для IEEE). Мосты могут связывать между собой фрагменты сетей, которые используют разные протоколы, например, 802.5, 802.4 и 802.3. Пакеты из кольца 1 адресованные объекту этого же кольца никогда не попадут в кольцо 2 и наоборот. Через мост пройдут лишь пакеты, которые адресованы объектам соседнего кольца. Фильтрация пакетов осуществляется по физическому адресу и номеру порта. На основе этих данных формируется собственная база данных, которая содержит информацию об объектах колец, подключенных к мосту. Схема распределения сети с помощью мостов может способствовать снижению эффективной загрузки сети.

Мосты с маршрутизацией от источника могут совмещать только сети Token Ring, а маршрутизация пакетов полагается на все устройства, которые посылают информацию в сеть (отсюда и название этого вида мостов). Это значит, что в каждом из сетевых устройств должно быть загружено программное обеспечение, что позволяет маршрутизовать пакеты от отправителя к получателю. Эти мосты не создают собственные базы данных о расположении сетевых объектов и посылают пакет в соседнее кольцо на основе маршрутного указания, что поступило от отправителя самого пакета. Таким образом, база данных о расположении сетевых объектов оказывается распределенной между станциями, которые хранят собственные маршрутные таблицы. Программы маршрутизации используют сетевой драйвер адаптера. Мосты с маршрутизацией от источника пересматривают все кадры, которые поступают, и отбирают те, которые имеют индикатор информации о маршруте RII=1. Такие кадры копируются, и по информации о маршруте определяется, нужно ли их посылать дальше. Мосты с маршрутизацией от источника могут быть настроены на широковещательную передачу по всем маршрутам, или на широковещательную передачу по одном маршруте.

В сетях со сложной топологией маршруты формируются в соответствии с иерархическим протоколом STP (Spanning Tree Protocol). Этот протокол организует маршруты динамически с выбором оптимального маршрута, если адресат доступен несколькими путями. При этом минимизируется транзитный трафик.

Технология Token Ring разработана компанией IBM в 1970-х гг. Сети, построенные на базе Token Ring, были рассчитаны на скорость обменаВ 4 и 16 Мбит/с при числе сегментов до 250. IEEE в 1985 г. приняла даннуюВ технологию в качестве стандарта IEEE 802.5. При этом в стандарте IEEEВ 802.5 топология не оговорена, а сетевая среда не регламентирована.

Схема передачи данных. Станция может начать передачу данных только после получения от предыдущей станции специального кадра -В маркера доступа. Если станция готова к передаче данных, то

  • 1) узел-отправитель:
    • ждет получения маркера,
    • захватывает маркер (на определенное время, после истечения которого станция обязана завершить передачу своего очередного кадра и передать маркер доступа следующей станции),
    • меняет в маркере один бит, преобразующий маркер во флаг началаВ кадра, вносит в кадр информацию, подлежащую пересылке,
    • посылает кадр следующей станции ;
  • 2) переданный в сеть кадр будет двигаться по сети от станции к станции, пока не попадет в узел, которому он адресован;
  • 3) узел назначения:
    • копирует необходимую информацию,
    • устанавливает флаг копирования (FCI), подтверждающий успешнуюВ доставку кадра адресату,
    • возвращает кадр в сеть,
    • кадр продолжает движение по сети от станции к станции, покаВ не попадет в узел-отправитель, где он будет уничтожен; путем контроляВ API (индикатора распознавания кадра адресатом) проверяется, подключена ли к сети станция назначения.

Система приоритетов. В кадре Token Ring за управление доступом отвечают два поля - приоритет и резервирование.

Станция может завладеть маркером только, если ее приоритет равен или выше приоритета маркера. Если маркер уже захвачен и преобразован в информационный кадр, то только станция с приоритетом выше, чемВ у станции отправителя, может зарезервировать маркер на следующий цикл.

Станции, которые подняли приоритет маркера, должны его восстановить после завершения передачи.

Физическое соединение

Топологию сети Token Ring можно рассматривать с двух позиций:

  • логически - кольцо;
  • физически - звезда.

Отдельные станции присоединяются к сети через специальные концентраторы - многостанционные устройства доступа (Multistation Access Unit, MSAU), которые соединены между собой, образуя кольцо (рис. 4.11 и 4.12).В MSAU может выполнять следующие функции: централизовывать заданиеВ конфигурации, отключать неисправные станции, контролировать работуВ сети и т.д. Для присоединения кабеля к MSAU применяются специальныеВ разъемы, которые обеспечивают замкнутость кольца даже при отключенииВ абонента от сети. Кабель содержит в себе две разнонаправленные линииВ связи. В составе MSAU имеются шунтирующие реле для исключения станций из кольца.

Рис. 4.11.

Механизмы обнаружения и предотвращения сетевых сбоев и ошибок.

В сетях Token Ring существует несколько механизмов обнаружения и предотвращения сетевых сбоев и ошибок:

  • присвоение одной из станций функций активного монитора, который играет роль центрального источника синхронизации для других станций сети, удаляет из кольца бесконечно циркулирующие кадры, генерирует новые кадры, осуществляет контроль работоспособности сети путемВ вывода из кольца станций, являющихся источником дефективных кадров;
  • перепрограммирование MSAU для проверки наличия проблемВ и выборочного удаления при необходимости станций из кольца;
  • применение «сигнализирующего» (beaconing ) алгоритма:
  • - станция, обнаружившая неисправность сети, высылает сигнальный блок данных, указывающий домен неисправности, состоящий из станции,

сообщающей о неисправности, ее ближайшего активного соседа, расположенного дальше по течению потока информации, и всего, что находится между ними;

Сигнализация инициализирует процесс автореконфигурации (auto-reconfiguration ), в ходе которого узлы, расположенные в пределах отказавшего домена, автоматически выполняют диагностику, пытаясь реконфигурировать сеть вокруг отказавшей зоны.


Рис. 4.12.

Формат блока данных. В сетях на базе Token Ring циркулируют два тина блока данных: блоки маркеров (рис. 4.13) и блоки данных/командВ (рис. 4.14).


Рис. 4.13.


Рис. 4.14.

Блок маркера имеет длину 3 байта. Блок данных и блок команд могут иметь разные размеры в зависимости от размеров информационного ноля.

Блоки данных переносят информацию для протоколов более высоких уровней, а блоки команд содержат управляющую информацию.

Поле ограничитель начала {Start Delimiter) (длина 1 байт) указывает на начало маркера (или блока данных/команд), содержит сигнальныеВ структуры, которые отличают его от остальной части блока данных.

Поле управление доступом (Access Control) (длина 1 байт) содержит следующие компоненты:

  • поле приоритета;
  • поле резервирования;
  • бит маркера, используемый для дифференциации маркера и блокаВ данных/команд;
  • бит монитора, используемый активным монитором для определения,В циркулирз"ет какой-либо блок в кольце непрерывно или нет.

Поле ограничителя конца {End Delimiter) (длина 1 байт) сигнализирует о конце маркера (или блока данных/ команд), содержит также бит для индикации поврежденного блока и бит идентификации блока, являющегося последним в логической последовательности. Поле управление блоком данных (Frame Control) (длина 1 байт) указывает на тип содержимогоВ блока - данные или управляющая информация. В управляющих блокахВ это поле определяет тип управляющей информации. Поля адрес отправителя и адрес получателя идентифицируют станции пункта назначенияВ и источника. Для IEEE 802.5 длина адресов равна 6 байтам. Поле данныеВ {Data) содержит передаваемые данные. Длина этого поля ограничена временем удержания маркера кольца. Поле контрольная сумма (FCS) содержитВ контрольную сумму, зависящую от содержания блока данных, при помощиВ которой проверяется целостность кадра.

Применение. Сеть на базе технологии Token Ring может применяться для приложений, требующих предсказуемости задержки получения информации и высокой надежности, например в сетях сопряжения с мейнфреймами.

Достоинства и недостатки

Достоинства:

  • в сетях на базе технологии Token Ring нс может быть коллизий, такВ как передавать информацию по сети может только одна станция, захватившая маркер, остальные станции вынуждены ожидать освобождения маркера;
  • можно вычислить максимальное время, которое пройдет, прежде чемВ любая станция сети сможет начать передачу данных.

Недостатки:

  • технология Token Ring представляет собой проприетарный стандартВ (IBM);
  • технология Token Ring практически прекратила свое развитие;
  • построение сетей на базе технологии Token Ring не получило распространения.
  • Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует. Поэтому другие станции, желающие передать информацию, вынуждены ожидать.

Сети TokenRing, так же как и сетиEthernet, характеризует разделяемая среда передачи данных, которая в данном случае состоит из отрезков кабеля, соединяю­щих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетяхEthernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специаль­ного формата, называемогомаркером илитокеном (token ). ТехнологияTokenRingбыл разработана компаниейIBMв 1984году, а затем передана в качестве проекта стандарта в комитетIEEE 802,который на ее основе принял в 1985году стандарт 802.5.СетиTokenRingработают с двумя битовыми скоростями - 4и 16Мбит/с. Сме­шение станций, работающих на различных скоростях, в одном кольце не допускается. СетиTokenRing, работающие со скоростью 16Мбит/с, имеют некоторые усовер­шенствования в алгоритме доступа по сравнению со стандартом 4Мбит/с. ТехнологияTokenRingявляется более сложной технологией, чемEthernet. Она обладает свойствами отказоустойчивости. В сетиTokenRingопределены процедуры контроля работы сети, которые используют обратную связь кольцеобразной струк­туры -посланный кадр всегда возвращается в станцию-отправитель. В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса. Если активный монитор выхо­дит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, по­следний в работоспособном состоянии каждые 3секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

В сетях с маркерным методом доступа (а к ним, кроме сетейTokenRing, относятся, сетиFDDI, а также сети, близкие к стандарту 802.4, -ArcNet, сети производственного назначенияMAP) право на доступ к среде передается циклически от станции к станции по логическому кольцу.

В сети TokenRingкольцо образуется отрезками кабеля, соединяющими сосед ние станции. Таким образом, каждая станция связана со своей предшествующей и последующей станцией и может непосредственно обмениваться данными толькоcними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения -маркер. В сетиTokenRingлюбая станция всегда непосредственно получает данные только от одной станции -той, которая является предыдущей в кольце. Такая станция называетсяближайшим активным соседом, расположенным выше по потоку (данных) -Nearest Active Upstream Neighbor , NAUN . Передачу же данных станция всегда осуществляет своему ближайшему соседу вниз по потоку данных, получив маркер, станция анализирует его и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что, дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой. Кадр снабжен адресом назначения и адресом источника. Все станции кольца ретранслируют кадр побитно, как повторители. Если кадр проходит через станцию назначения, то, распознав свой адрес, эта станция копиру­ет кадр в свой внутренний буфер и вставляет в кадр признак подтверждения при­ема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и передает в сеть новый маркер для обеспечения возможности другим станциям сети передавать данные. Такой алгоритм доступа применяется в сетяхTokenRingсо скоростью работы4Мбит/с, описанных в стандарте 802.5.

Время владения разделяемой средой в сети TokenRingограничиваетсявреме­нем удержания маркера (token holding time ), после истечения которого станция обязана прекратить передачу собственных данных (текущий кадр разрешается за­вершить) и передать маркер далее по кольцу. Станция может успеть передать за время удержания маркера один или несколько кадров в зависимости от размера кадров и величины времени удержания маркера. Обычно время удержания марке­ра по умолчанию равно 10мс, а максимальный размер кадра в стандарте 802.5не определен. Для сетей 4Мбит/с он обычно равен 4Кбайт, а для сетей 16Мбит/с - 16Кбайт. Это связано с тем, что за время удержания маркера станция должна успеть передать хотя бы один кадр. При скорости 4Мбит/с за время 10мс можно передать 5000байт, а при скорости 16Мбит/с -соответственно 20 000байт. Мак­симальные размеры кадра выбраны с некоторым запасом.

В сетях TokenRing 16Мбит/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмомраннего освобождения маркера (Early Token Release ). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно, так как по коль­цу одновременно продвигаются кадры нескольких станций. Тем не менее свои кад­ры в каждый момент времени может генерировать только одна станция -та, которая в данный момент владеет маркером доступа. Остальные станции в это время толь­ко повторяют чужие кадры, так что принцип разделения кольца во времени сохра­няется, ускоряется только процедура передачи владения кольцом.

Для различных видов сообщений, передаваемым кадрам, могут назначаться различ­ные приоритеты: от 0(низший) до 7(высший). Решение о приоритете конкретного кадра принимает передающая станция (протоколTokenRingполучает этот параметр Через межуровневые интерфейсы от протоколов верхнего уровня, например при­кладного). Маркер также всегда имеет некоторый уровень текущего приоритета. Станция имеет право захватить переданный ей маркер только в том случае, если приоритет кадра, который она хочет передать, выше (или равен) приоритета маркера. В противном случае станция обязана передать маркер следующей по кольцу станции.

За наличие в сети маркера, причем единственной его копии, отвечает активный монитор. Если активный монитор не получает маркер в течение длительного вре­мени (например, 2,6с), то он порождает новый маркер.

Стандарт TokenRingфирмыIBMизначально предусматривал построение связей в сети с помощью концентраторов, называемыхMAU(MultistationAccessUnit) илиMSAU(Multi-StationAccessUnit), то есть устройствами многостанционного дос­тупа (рис. 3.15).СетьTokenRingможет включать до 260узлов.

Концентратор TokenRingможет быть активным или пассивным. Пассивный концентратор просто соединяет порты внутренними связями так, чтобы станции, подключаемые к этим портам, образовали кольцо. Ни усиление сигналов, ни их ресинхронизацию пассивный MSAUне выполняет. Такое устройство можно счи­тать простым кроссовым блоком за одним исключением - MSAUобеспечивает обход какого-либо порта, когда присоединенный к этому порту компьютер выклю­чают. Такая функция необходима для обеспечения связности кольца вне зависимо­сти от состояния подключенных компьютеров. Обычно обход порта выполняется за счет релейных схем, которые питаются постоянным током от сетевого адаптера, а при выключении сетевого адаптера нормально замкнутые контакты реле соеди­няют вход порта с его выходом. Активный концентратор выполняет функции регенерации сигналов и поэтому иногда называется повторителем, как в стандартеEthernet.

В общем случае сеть TokenRingимеет комбинированную звездно-кольцевую конфигурацию. Конечные узлы подключаются кMSAUпо топологии звезды, а сами MSAUобъединяются через специальные портыRingIn(RI) иRingOut(RO) для образования магистрального физического кольца. Все станции в кольце должны работать на одной скорости -либо 4Мбит/с, либо 16Мбит/с. Кабели, соединяющие станцию с концентратором, называются ответвительными (lobecable), а кабели, соединяющие концентраторы, -магист­ральными (trunkcable). ТехнологияTokenRingпозволяет использовать для соединения конечных стан­ций и концентраторов различные типы кабеля:STPTypeI,UTPType 3,UTPType 6, а также волоконно-оптический кабель. При использовании экранированной витой парыSTPType 1из номенклатуры кабельной системыIBMв кольцо допускается объединять до 260станций при длине ответвительных кабелей до 100метров, а при использовании неэкраниро­ванной витой пары максимальное количество станций сокращается до 72при дли­не ответвительных кабелей до 45метров.Расстояние между пассивными MSAUможет достигать 100м при использова­нии кабеляSTPType 1и 45м при использовании кабеляUTPType 3.Между активными MSAUмаксимальное расстояние увеличивается соответственно до 730м или 365м в зависимости от типа кабеля. Максимальная длина кольцаTokenRingсоставляет 4000м.

Недавно компания IBMпредложила новый вариант технологииTokenRing, названныйHigh-SpeedTokenRing,HSTR. Эта технология поддерживает битовые скорости в 100и 155Мбит/с, сохраняя основные особенности технологииTokenRing 16Мбит/с.

Выводы

Технология TokenRingразвивается в основном компаниейIBMи имеет также статус стандартаIEEE 802.5,который отражает наиболее важные усовершен­ствования, вносимые в технологиюIBM.

В сетях TokenRingиспользуется маркерный метод доступа, который гаран­тирует каждой станции получение доступа к разделяемому кольцу в течение времени оборота маркера. Из-за этого свойства этот метод иногда называют детерминированным.

Метод доступа основан на приоритетах: от 0(низший) до 7(высший). Станция сама определяет приоритет текущего кадра и может захватить кольцо только в том случае, когда в кольце нет более приоритетных кадров.

Сети TokenRingработают на двух скоростях: 4и 16Мбит/с и могут использовать в качестве физической среды экранированную витую пару, неэкранированную витую пару, а также волоконно-оптический кабель. Максимальное количество станций в кольце - 260,а максимальная длина кольца - 4км.

Технология TokenRingобладает элементами отказоустойчивости. За счет об­ратной связи кольца одна из станций -активный монитор -непрерывно конт­ролирует наличие маркера, а также время оборота маркера и кадров данных. При некорректной работе кольца запускается процедура его повторной иници­ализации, а если она не помогает, то для локализации неисправного участка кабеля или неисправной станции используется процедураbeaconing.

Максимальный размер поля данных кадра TokenRingзависит от скорости ра­боты кольца. Для скорости 4Мбит/с он равен около 5000байт, а при скорости16Мбит/с -около 16Кбайт. Минимальный размер поля данных кадра не оп­ределен, то есть может быть равен 0.

В сети TokenRingстанции в кольцо объединяют с помощью концентраторов, называемых MSAU.Пассивный концентратор MSAUвыполняет роль кроссо-вой панели, которая соединяет выход предыдущей станции в кольце со входом последующей. Максимальное расстояние от станции доMSAU- 100м для STP и 45м для UTP.

Активный монитор выполняет в кольце также роль повторителя -он ресинхро-низирует сигналы, проходящие по кольцу.

Кольцо может быть построено на основе активного концентратора MSAU,ко­торый в этом случае называют повторителем.

Сеть TokenRingможет строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу «от источника», для чего в кадрTokenRingдобавляется специальное поле с маршрутом прохождения колец.

Введение

Технология сетей Token Ring была впервые представлена IBM в 1982 г. и в 1985 г. была включена IEEE (Institute for Electrical and Electronic Engeneers) как стандарт 802.5. Token Ring попрежнему является основной технологией IBM для локальных сетей (LAN), уступая по популярности среди технологий LAN только Ethernet/IEEE 802.3. Сети Token Ring работают с двумя битовыми скоростями - 4 Мб/с и 16 Мб/с. Первая скорость определена в стандарте 802.5, а вторая является новым стандартом де-факто, появившимся в результате развития технологии Token Ring.

В Token Ring кабели подключаются по схеме “звезда”, однако он функционирует как логическое кольцо.

В логическом кольце циркулирует маркер (небольшой кадр специального формата, называемый иногда токеном), когда он доходит до станции, то она захватывает канал. Маркер всегда циркулирует в одном направлении. Узел, получающий маркер у ближайшего вышерасположенного активного соседа передает его нижерасположенному. Каждая станция в кольце получает данные из занятого маркера и отправляет их (в точности повторяя маркер) соседнему узлу сети. Таким способом данные циркулируют по кольцу до тех пор, пока не достигнут станции – адресата. В свою очередь эта станция сохраняет данные и передает их протоколам верхнего уровня а кадр передает дальше (поменяв в нем два бита – признак получения). Когда маркер достигает станции–отправителя – он высвобождается, и далее процесс продолжается аналогично.

В сетях Token Ring 16 Мб/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом “раннего освобождения маркера” (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно и приближается к 80 % от номинальной. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает "раннего освобождения маркера"), поэтому другие станции, желающие передать информацию, вынуждены ожидать.Таким образом по сети может в один момент времени передаваться только один пакет следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

Сети Тоkеn Ring используют сложную систему приоритетов, которая позволяет некоторым станциям с высоким приоритетом, назначенным пользователем, более часто пользоваться сетью. Блоки данных Token Ring содержат два поля, которые управляют приоритетом: поле приоритетов и поле резервирования.

Только станции с приоритетом, который равен или выше величины приоритета, содержащейся в маркере, могут завладеть им. После того, как маркер захвачен и изменен(в результате чего он превратился в информационный блок), только станции, приоритет которых выше приоритета передающей станции, могут зарезервировать маркер для следующего прохода по сети. При генерации следующего маркера в него включается более высокий приоритет данной резервирующей станции. Станции, которые повышают уровень приоритета маркера, должны восстановить предыдущий уровень приоритета после завершения передачи.

Когда кольцо установлено, интерфейс каждой станции хранит адреса предшествующей станции и последующей станции в кольце. Периодически держатель маркера рассылает один из SOLICIT_SUCCESSOR кадр, предлагая новым станциям присоединиться к кольцу. В этом кадре указаны адрес отправителя и адрес следующий за ним станции в кольце. Станции с адресами в этом диапазоне адресов могут присоединиться к кольцу. Таким образом сохраняется упорядоченность (по возрастанию) адресов в кольце. Если ни одна станция не откликнулась на SOLICIT_SUCCESSOR кадр, то станция-обладатель маркера закрывает окно ответа и продолжает функционировать как обычно. Если есть ровно один отклик, то откликнувшаяся станция включается в кольцо и становиться следующей в кольце. Если две или более станции откликнулись, то фиксируется коллизия. Станция-обладатель маркера запускает алгоритм разрешения коллизий, посылая кадр RESOLVE_CONTENTION. Этот алгоритм - модификация алгоритма обратного двоичного счетчика на два разряда.

У каждой станции в интерфейсе есть два бит, устанавливаемых случайно. Их значения 0,1,2 и 3. Значение этих битов определяют величину задержки, при отклике станции на приглашение подключиться к кольцу. Значения этих бит переустанавливаются каждые 50mсек.

Процедура подключения новой станции к кольцу не нарушает наихудшее гарантированное время для передачи маркера по кольцу. У каждой станции есть таймер, который сбрасывается когда станция получает маркер. Прежде чем он будет сброшен его значение сравнивается с некоторой величиной. Если оно больше, то процедура подключения станции к кольцу не запускается. В любом случае за один раз подключается не более одной станции за один раз. Теоретически станция может ждать подключения к кольцу сколь угодно долго, на практике не более нескольких секунд. Однако, с точки зрения приложений реального времени это одно из наиболее слабых мест 802.4.

Отключение станции от кольцо очень просто. Станция Х с предшественником S и последователем Р шлет кадр SET_SUCCESSOR, который указывает Р что отныне его предшественником является S. После этого Х прекращает передачу.

Инициализация кольца - это специальный случай подключения станции к кольцу. В начальный момент станция включается и слушает канал. Если она не обнаруживает признаков передачи, то она генерирует CLAIM_TOKEN маркер.

Если конкурентов не обнаружилось, то она генерирует маркер сама и устанавливает кольцо из одной станции. Периодически она генерирует кадры SOLICIT_SUCCESSOR, приглашая другие станции включиться в кольцо. Если в начальный момент сразу две станции были включены, то запускается алгоритм обратного двоичного счетчика с двумя разрядами.

Под ISU (Information Symbol Unit) понимается единица передачи информации

Общая часть

В сетях Token Ring используются различные типы кадров:

Data/Command Frame (кадр управления/данные), Token (маркер), Abort (кадр сброса).

Аппаратное обеспечение сетей Token Ring

При подключении устройств в ARCNet применяют топологию шина или звезда. Адаптеры ARCNet поддерживают метод доступа Token Bus (маркерная шина)

Смешение станций, работающих на различных скоростях, в одном кольце не допускается.

Коллизии

Из-за ошибок передач и сбоев оборудования могут возникать проблем с передачей маркера - коллизии. Стандарт Token Ring четко определяет методы разрешения коллизий:

Важной для разрешения коллизий является возможность станций “слушать” после передачи.

В случае, если станция передает маркер соседней, а та в это время отключается (например из-за аппаратного сбоя), то если не последует передач кадра или маркера, то маркер посылается вторично.

Если и при повторной передаче маркера ничего не последовало, то станция посылает WHO_FOLLOWS кадр, где указан не отвечающий сосед. Увидя этот кадр, станция, для которой не отвечающая станция - предшественник, шлет кадр SET_SUCCESSOR, и становится новым соседом. При этом неотвечающая станция исключается из кольца.

В случае, если остановилась не только следующая станция, но и следующая за ней - запускается новая процедура, посылкой кадра SOLICIT_SUCCESSOR_2. В ней участвует процедура разрешения конфликтов. При этом все кто хочет подключиться к кольцу могут это сделать. Фактически кольцо переустанавливается.

Другой вид проблем возникает, когда останавливается держатель маркера и маркер исчезает из кольца. Эта проблема решается запуском процедуры инициализации кольца. У каждой станции есть таймер, который сбрасывается каждый раз, когда маркер появляется. Если значение этого таймера превысит некоторой заранее установленное значение (time out), то станция генерирует кадр CLAIM_TOKEN. При этом запускается алгоритм обратного двоичного счетчика.

Если оказалось два и более маркеров на шине, станция, владеющая маркером, увидев передачу маркера на шине, сбрасывает свой маркер. Так повторяется до тех пор пока не останется ровно один маркер в системе.

Не все станции в кольце равны. Одна из станций обозначается как активный монитор, что означает дополнительную ответственность по управлению кольцом. Активный монитор осуществляет управление тайм-аутом в кольце, порождает новые маркеры (если необходимо), чтобы сохранить рабочее состояние, и генерирует диагностические кадры при определенных обстоятельствах. Активный монитор выбирается, когда кольцо инициализируется, и в этом качестве может выступить любая станция сети. Алгоритм определения активного монитора следующий: при включении или если какая-то станции заметит отсутствие монитора, она посылает CLAIM_TOKEN кадр. Если она первая, кто послал такой кадр, то она и становится монитором

Если монитор отказал по какой-либо причине, существует механизм, с помощью которого другие станции (резервные мониторы) могут договориться, какая из них будет новым активным монитором. Одной из функций для которых служит активный монитор является удаление из кольца постоянно циркулирующих блоков данных. Если устройство, отправившее блок данных,

отказало, то этот блок может постоянно циркулировать по кольцу. Это может помешать другим станциям передавать собственные блоки данных и фактически блокирует сеть. Активный монитор может выявлять и удалять такие блоки и генерировать новый маркер. Важной функцией монитора является установка задерки на кольце, задержка должна быть достаточна, для того, чтобы в кольце уместился 24-битный маркер.

Звездообразная топология сети IBM Token Ring также способствует повышению общей надежности сети. Т.к. вся информация сети Token Ring просматривется активными MSAU, эти устройства можно запрограммировать так, чтобы они проверяли наличие проблем и при необходимости выборочно удаляли станции из кольца.

Алгоритм Token Ring, называемый "сигнализирующим" (beaconing ), выявляет и пытается устранить некоторые неисправности сети. Если какая-нибудь станция обнаружит серьезную проблему в сети (например такую, как обрыв кабеля), она высылает сигнальный блок данных. Сигнальный блок данных указывает домен неисправности, в который входят станция, сообщающая о неисправности, ее ближайший активный сосед, находящийся выше по течению потока информации (NAUN), и все, что находится между ними. Сигнализация инициализирует процесс, называемый "автореконфигурацией" (autoreconfiguration ), в ходе которого узлы, расположенные в пределах отказавшего домена, автоматически выполняют диагностику, пытаясь реконфигурировать сеть вокруг отказавшей зоны. В физическом плане MSAU может выполнить это с помощью электрической реконфигурации.

Практическая часть

Пусть у нас есть сеть из 50 станций, работающая на скорости 10 Мбит/сек и настроенная так, что на подстанции с приоритетом 6 остается 1/3 пропускной способности. Тогда каждая станция имеет гарантированно для приоритета 6 скорость не менее 67 Кб/с. Эта пропускная способность может быть использована для управления устройствами в реальном масштабе времени.

Важной проблемой при создании кольцевой сети является "физическая длина" бита. Пусть данные передаются со скоростью R Mbps. Это значит, что каждые 1/R ms на линии появляется бит. Учитывая, что сигнал распространяется со скоростью 200 m/ms, то один бит занимает 200/R метров кольца. Отсюда, при скорости 1 Мbps и длине окружности 1 км кольцо вмещает не более 5 бит одновременно.

Следствием конструкции сети кольцо с маркером является т, что сеть должна иметь достаточную протяженность, чтобы маркер могут уместиться в ней целиком даже когда все станции находятся в ожидании. Задержки складываются из двух компонентов - 1 бит задержка на интерфейсе станции и задержка на распространение сигнала. Учитывая, что станции могут выключаться, например

на ночь, следует что на кольце должна быть искусственная задержка, если кольцо не достаточно длинное. При малой загрузке станции в сети кольцо с маркером сразу смогут передавать свои сообщения. По мере роста загрузки у станций будут расти очереди на передачу и они в соответствии с кольцевым алгоритмом будут захватывать маркер и вести передачу. Постепенно загрузка кольца будет расти пока не достигнет 100%.

Формат маркера

Кадр маркера состоит из трех полей, каждое длиной в один байт.

    Поле начального ограничителя появляется в начале маркера, а также в начале любого кадра, проходящего по сети. Поле состоит из уникальной серии электрических импульсов, которые отличаются от тех импульсов, которыми кодируются единицы и нули в байтах данных. Поэтому начальный ограничитель нельзя спутать ни с какой битовой последовательностью.

    Поле контроля доступа. Разделяется на четыре элемента данных:
    PPP T M RRR,
    где PPP - биты приоритета, T - бит маркера, M - бит монитора, RRR - резервные биты.

Каждый кадр или маркер имеет приоритет, устанавливаемый битами приоритета (значение от 0 до 7, 7 - наивысший приоритет). Станция может воспользоваться маркером, если только она получила маркер с приоритетом, меньшим или равным, чем ее собственный. Сетевой адаптер станции, если ему не удалось захватить маркер, помещает свой приоритет в резервные биты маркера, но только в том случае, если записанный в резервных битах приоритет ниже его собственного. Эта станция будет иметь преимущественный доступ при последующем поступлении к ней маркера.

Схема использования приоритетного метода захвата маркера показана на рисунке 13. Сначала монитор помещает в поле текущего приоритета P максимальное значение приоритета, а поле резервного приоритета R обнуляется (маркер 7110). Маркер проходит по кольцу, в котором станции имеют текущие приоритеты 3, 6 и 4. Так как эти значения меньше, чем 7, то захватить маркер станции не могут, но они записывают свое значение приоритета в поле резервного приоритета, если их приоритет выше его текущего значения. В результате маркер возвращается к монитору со значением резервного приоритета R = 6. Монитор переписывает это значение в поле P, а значение резервного приоритета обнуляет, и снова отправляет маркер по кольцу. При этом обороте его захватывает станция с приоритетом 6 - наивысшим приоритетом в кольце в данный момент времени.

Бит маркера имеет значение 0 для маркера и 1 для кадра.

Бит монитора устанавливается в 1 активным монитором и в 0 любой другой станцией, передающей маркер или кадр. Если активный монитор

видит маркер или кадр, содержащий бит монитора в 1, то активный монитор знает, что этот кадр или маркер уже однажды обошел кольцо и не был обработан станциями. Если это кадр, то он удаляется из кольца. Если это маркер, то активный монитор переписывает приоритет из резервных битов полученного маркера в поле приоритета. Поэтому при следующем проходе маркера по кольцу его захватит станция, имеющая наивысший приоритет.

    Поле конечного ограничителя - последнее поле маркера. Так же, как и поле начального ограничителя, это поле содержит уникальную серию электрических импульсов, которые нельзя спутать с данными. Кроме отметки конца маркера это поле также содержит два подполя: бит промежуточного кадра и бит ошибки. Эти поля относятся больше к кадру данных, который мы и рассмотрим

--------

Поля Start delimiter и End delimiter предназначены для распознавания начала и конца кадра. Они имеют специальную кодировку, которая не может встретиться у пользователя. Поэтому поля длина кадра не требуется. Поле Frame control отделяет управляющие поля от полей данных. Для кадров данных здесь указывается приоритет кадра. Это поле также используется станцией получателем для подтверждения корректного или не корректного получения кадра. Без этого поля получатель был бы лишен возможности давать подтверждения - у него нет маркера.

Token ring и FDDI

Технология Fiber Distributed Data Interface (FDDI ) - первая технология локальных сетей, которая использовала в качестве среды передачи данных оптоволоконный кабель.

FDDI по существу представляет собой быстродействующий вариант Token Ring на волоконной оптике. В отличае от Token Ring FDDI реализуется без традиционных концентраторов-“хабов”. Еще одним отличием FDDI от Token Ring является возможность передавать данные одновременно, т.е. в сетях FDDI может одновременно циркулировать несколько кадров.

По своей топологии FDDI состоит из двух логических колец с циркуляцией маркеров по ним в противоположных направлениях. Кольца образуют основной и резервный пути передачи данных между узлами сети. Использование двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят им воспользоваться, должны быть подключены к обоим кольцам. В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля первичного (Primary) кольца, поэтому этот режим назван режимом Thru - "сквозным" или "транзитным". Вторичное кольцо (Secondary) в этом режиме не используется. В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным

), образуя вновь единое кольцо. Этот режим работы сети называется Wrap, то есть "свертывание" или "сворачивание" колец. Операция свертывания производится силами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются против часовой стрелки, а по вторичному - по часовой. Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

В FDDI достигается битовая скорость 100 Мб/с

Процедура инициализации FDDI несколько отличается от инициализации Token Ring:

Для выполнения процедуры инициализации каждая станция сети должна знать о своих требованиях к максимальному времени оборота токена по кольцу. Эти требования содержатся в параметре, называемом "требуемое время оборота токена" - TTRT (Target Token Rotation Time) .

Параметр TTRT отражает степень потребности станции в пропускной способности кольца - чем меньше время TTRT, тем чаще станция желает получать токен для передачи своих кадров. Процедура инициализации позволяет станциям узнать о требованиях ко времени оборота токена других станций и выбрать минимальное время в качестве общего параметра T_Opr, на основании которого в дальнейшем будет распределяться пропускная способность кольца. Параметр TTRT должен находиться в пределах от 4 мс до 165 мс и может изменяться администратором сети.

Для проведения процедуры инициализации станции обмениваются служебными кадрами МАС-уровня - кадрами Claim. Эти кадры имеют в поле управления значение 1L00 0011, поле адреса назначения содержит адрес источника (DA = SA), а в поле информации содержится 4-х байтовое значение запрашиваемого времени оборота токена T_Req.

Если какая-либо станция решает начать процесс инициализации кольца по своей инициативе, то она формирует кадр Claim Token со своим значением требуемого времени оборота токена TTRT, то есть присваивает полю T_Req свое значение TTRT. Захвата токена для отправки кадра Claim не требуется. Любая другая станция, получив кадр Claim Token, начинает выполнять процесс Claim Token. При этом станции устанавливают признак нахождения кольца в работоспособном состоянии Ring_Operational в состояние False, что означает отмену нормальных операций по передаче токена и кадров данных. В этом состоянии станции обмениваются только служебными кадрами Claim.

Для выполнения процедуры инициализации каждая станция поддерживает таймер текущего времени оборота токена TRT (Token Rotation Timer), который используется также и в дальнейшем при работе кольца в нормальном режиме. Для упрощения изложения будем считать, что этот таймер, как и другие таймеры станции, инициализируется нулевым значением и затем наращивает свое значение до определенной величины, называемой порогом истечения таймера. (В реальном кольце FDDI все таймеры работают в двоичном дополнительном коде).

Таймер TRT запускается каждой станцией при обнаружении момента начала процедуры Claim Token. В качестве предельного значения таймера выбирается максимально допустимое время оборота токена, то есть 165 мс. Истечение таймера TRT до завершения процедуры означает ее неудачное окончание - кольцо не удалось инициализировать. В случае неудачи процесса Claim Token запускается процессы Beacon и Trace, с помощью которых станции кольца пытаются выявить некорректно работающую часть кольца и отключить ее от сети.

Во время выполнения процесса Claim Token каждая станция сначала может отправить по кольцу кадр Claim со значением T_Req, равным значению ее параметра TTRT. При этом она устанавливает значение T_Opr, равное значению TTRT. Рассмотрим пример инициализируемого кольца, приведенный на рисунке 9.

В некоторый момент времени все станции передали по кольцу свои предложения о значении максимального времени оборота токена: 72 мс, 37 мс, 51 мс и 65 мс. Станция, приняв кадр Claim от предыдущей станции, обязана сравнить значение T_Req, указанное в кадре со значением TTRT своего предложения.

Если другая станция просит установить время оборота токена меньше, чем данная (то есть T_Req

Станция, являющаяся источником кадра для сети, ответственна за то, чтобы удалить кадр из сети, после того, как он, совершив полный оборот, вновь дойдет до нее.

Начальные версии различных составляющих частей стандарта FDDI были разработаны комитетом Х3Т9.5 в 1986 - 1988 годах, и тогда же появилось первое оборудование - сетевые адаптеры, концентраторы, мосты и маршрутизаторы, поддерживающие этот стандарт.

В настоящее время большинство сетевых технологий поддерживают оптоволоконные кабели в качестве одного из вариантов физического уровня, но FDDI остается наиболее отработанной высокоскоростной технологией, стандарты на которую прошли проверку временем и устоялись, так что оборудование различных производителей показывает хорошую степень совместимости.

Блок-схемы

Token Ring

Ring Token Ring работают с двумя... технологии Token Ring . Смешение станций, работающих на различных скоростях, в одном кольце не допускается. Сети Token Ring ...
  • Разработка локальной вычислительной сети производственного кооператива

    Курсовая работа >> Информатика

    Законодателем моды технологии Token Ring , производя около 60 % сетевых адаптеров этой технологии . Сети Token Ring работают с двумя... Token Ring является более сложной технологией , чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring ...

  • Технологии коммутации кадров frame switching в локальных сетях

    Реферат >> Информатика

    ... (frame switching) в локальных сетях Ограничения традиционных технологий (Ethernet, Token Ring ), основанных на разделяемых средах... передачи в сетях Token Ring или FDDI (рисунок 2.13). Принцип работы коммутатора в сетях любых технологий оставался...

  • Сеть Token-Ring была предложена фирмой IBM в 1985 году (первый вариант появился в 1980 году). Назначением Token-Ring было объединение в сеть всех типов компьютеров, выпускаемых IBM (от персональных до больших). Уже тот факт, что ее поддерживает фирма IBM, крупнейший производитель компьютерной техники, говорит о том, что ей необходимо уделить особое внимание. Но не менее важно и то, что Token-Ring является в настоящее время международным стандартом IEEE 802.5. Это ставит данную сеть на один уровень по статусу с Ethernet.

    Фирма IBM сделала все для максимально широкого распространения своей сети: была выпущена подробная документация вплоть до принципиальных схем адаптеров. В результате многие фирмы, например 3COM, Novell, Western Digital, Proteon приступили к производству адаптеров. Кстати, специально для этой сети, а также для другой сети IBM PC Network была разработана концепция NetBIOS. Если в разработанной ранее сети PC Network программы NetBIOS хранились во встроенной в адаптер постоянной памяти, то в сети Token-Ring уже применялась эмулирующая NetBIOS программа, что позволяло более гибко реагировать на особенности конкретной аппаратуры, поддерживая при этом совместимость с программами более высокого уровня.

    По сравнению с аппаратурой Ethernet аппаратура Token-Ring оказывается заметно дороже, так как использует более сложные методы управления обменом, поэтому распространена сеть Token-Ring значительно меньше. Однако ее применение становится оправданным, когда требуются большие интенсивности обмена (например, при связи с большими компьютерами) и ограниченное время доступа.

    Рис. 5.3. Звездно-кольцевая топология сети Token-Ring

    Сеть Token-Ring имеет топологию «кольцо», хотя внешне она больше напоминает «звезду». Это связано с тем, что отдельные абоненты (компьютеры) присоединяются к сети не прямо, а через специальные концентраторы или многостанционные устройства доступа (MSAU или MAU -Multistation Access Unit). Поэтому физически сеть образует звездно-кольцевую топологию (рис. 5.3). В действительности же абоненты объединяются все-таки в кольцо, то есть каждый из них передает информацию одному соседнему абоненту, а принимает информацию от другого соседнего абонента.

    Концентратор (MAU) при этом только позволяет централизовать задание конфигурации, отключение неисправных абонентов, контроль за работой сети и т.д. (рис. 5.4). Для присоединения кабеля к концентратору применяются специальные разъемы, которые обеспечивают постоянство замкнутости кольца даже при отключении абонента от сети. Концентратор в сети может быть и единственным, в этом случае в кольцо замыкаются только абоненты, подключенные к нему.

    Рис. 5.4. Соединение абонентов сети Token-Ring в кольцо с помощью концентратора (MAU)

    В каждом кабеле, соединяющем адаптеры и концентратор (адаптерные кабели, adapter cable), находятся на самом деле две разнонаправленные линии связи. Такими же двумя разнонаправленными линиями связи, входящими в магистральный кабель (path cable), объединяются между собой в кольцо различные концентраторы (рис. 5.5), хотя для этой же цели может также использоваться и единственная однонаправленная линия связи (рис. 5.6).

    Рис. 5.5. Объединение концентраторов двунаправленной линией связи

    Рис. 5.6. Объединение концентраторов однонаправленной линией связи

    Конструктивно концентратор представляет собой автономный блок с восемью разъемами для подключения абонентов (компьютеров) с помощью адаптерных кабелей и двумя (крайними) разъемами для подключения к другим концентраторам с помощью специальных магистральных кабелей (рис. 5.7). Существуют настенный и настольный варианты концентратора.

    Несколько концентраторов могут конструктивно объединяться в группу, кластер (cluster), внутри которого абоненты также соединены в единое кольцо. Применение кластеров позволяет увеличивать количество абонентов, подключенных к одному центру (например, до 16, если в кластер входит два концентратора).

    Рис. 5.7. Концентратор Token-Ring (8228 MAU)

    В качестве среды передачи в сети IBM Token-Ring сначала применялась витая пара, но затем появились варианты аппаратуры для коаксиального кабеля, а также для оптоволоконного кабеля в стандарте FDDI. Витая пара применяется как неэкранированная (UTP), так и экранированная (STP).

    Основные технические характеристики сети Token-Ring следующие.

    • Максимальное количество концентраторов типа IBM 8228 MAU - 12.
    • Максимальное количество абонентов в сети - 96.
    • Максимальная длина кабеля между абонентом и концентратором - 45 м.
    • Максимальная длина кабеля между концентраторами -45м.
    • Максимальная длина кабеля, соединяющего все концентраторы - 120м.
    • Скорость передачи данных - 4 Мбит/с и 16 Мбит/с.

    Все приведенные характеристики относятся к случаю неэкранированной витой пары. В случае применения другой среды передачи характеристики сети могут отличаться. Например, при использовании экранированной витой пары количество абонентов может быть увеличено до 260 (вместо 96), длина кабеля - до 100 м (вместо 45), количество концентраторов -до 33, а полная длина кольца, соединяющего концентраторы - до 200 м. Оптоволоконный кабель позволяет увеличивать длину кабеля до 1 км.

    Как видим, сеть Token-Ring уступает сети Ethernet как по допустимому размеру сети, так и по максимальному количеству абонентов. Что касается скорости передачи, то в настоящее время ведется разработка версий Token-Ring на скорость 100 Мбит/с и на 1000 Мбит/с. Фирма IBM вовсе не собирается отказываться от своей сети, рассматривая ее как достойного конкурента Ethernet.

    Для передачи информации в Token-Ring используется вариант кода Ман-честер-П. Как и в любой звездообразной топологии, никаких дополнительных мер по электрическому согласованию и внешнему заземлению не требуется.

    Для присоединения кабеля к сетевому адаптеру используется внешний 9-контактный разъем типа DIN. Так же, как и адаптеры Ethernet, адаптеры Token-Ring имеют на своей плате переключатели или перемычки для настройки адресов и прерываний системной шины. Если сеть Ethernet можно построить только на адаптерах и кабеле, то для сети Token-Ring обязательно нужно приобретать концентраторы. Это также увеличивает стоимость аппаратуры Token-Ring.

    В то же время в отличие от Ethernet сеть Token-Ring лучше держит большую нагрузку (больше 30-40%) и обеспечивает гарантированное время доступа. Это крайне необходимо, например, в сетях производственного назначения, в которых задержка реакции на внешнее событие может привести к серьезным авариям.

    В сети Token-Ring используется классический маркерный метод доступа, то есть по кольцу постоянно циркулирует маркер, к которому абоненты могут присоединять свои пакеты данных. Отсюда следует такое важное достоинство данной сети, как отсутствие конфликтов, но отсюда же следуют такие недостатки, как необходимость контроля за целостностью маркера и зависимость функционирования сети от каждого из абонентов (в случае неисправности абонент обязательно должен быть исключен из кольца).

    Для контроля за целостностью маркера используется один из абонентов (так называемый активный монитор). Его аппаратура ничем не отличается от остальных, но его программные средства следят за временными соотношениями в сети и формируют в случае необходимости новый маркер. Активный монитор выбирается при инициализации сети, им может быть любой компьютер сети. Если активный монитор по какой-то причине выходит из строя, то включается специальный механизм, посредством которого другие абоненты (запасные мониторы) принимают решение о назначении нового активного монитора.

    Рис. 5.8. Формат маркера сети Token-Ring

    Маркер представляет собой управляющий пакет, содержащий всего три байта (рис. 5.8): байт начального разделителя (SD - Start Delimiter), байт управления доступом (АС - Access Control) и байт конечного разделителя (ED - End Delimiter). Начальный разделитель и конечный разделитель представляют собой не просто последовательность нулей и единиц, а содержат импульсы специального вида. Благодаря этому данные разделители нельзя спутать ни с какими другими байтами пакетов. Четыре бита разделителя представляют собой нулевые биты в принятой кодировке, а четыре других бита не соответствуют коду Манчестер-П: в течение двух битовых интервалов удерживается один уровень сигнала, а в течение двух остальных - другой уровень. В результате такой сбой синхронизации легко выявляется приемником.

    Рис. 5.9. Формат байта управления доступом

    Байт управления разделен на четыре поля (рис. 5.9): три бита приоритета, бит маркера, бит монитора и три бита резервирования. Биты приоритета позволяют абоненту присваивать приоритет своим пакетам или маркеру (приоритет может быть от 0 до 7, причем 7 соответствует наивысшему приоритету, а 0 - наинизшему). Абонент может присоединить к маркеру свой пакет только тогда, когда его собственный приоритет такой же или выше приоритета маркера. Бит маркера определяет, присоединен ли к маркеру пакет (единица соответствует маркеру без пакета, нуль - маркеру с пакетом). Бит монитора, установленный в единицу, говорит о том, что данный маркер передан активным монитором. Биты резервирования позволяют абоненту зарезервировать свое право на дальнейший захват сети, то есть, так сказать, занять очередь на обслуживание. Если приоритет абонента выше, чем текущее значение поля резервирования, он может записать туда свой приоритет вместо прежнего.

    Формат пакета Token-Ring представлен на рис. 5.10. Помимо начального и конечного разделителей, а также байта управления доступом, в пакет входят также байт управления пакетом, сетевые адреса приемника и передатчика, данные, контрольная сумма и байт состояния,пакета.

    Рис. 5.10. Формат пакета сети Token-Ring (длина полей дана в байтах)

    Назначение полей пакета следующее:

    • Начальный разделитель (SD) является признаком начала пакета.
    • Байт управления доступом (АС) имеет то же назначение, что и в маркере.
    • Байт управления пакетом (FC - Frame Control) определяет тип пакета (кадра).
    • Шестибайтовые адреса отправителя и получателя пакета имеют стандартный формат, описанный в разделе 3.2.
    • Поле данных включает в себя передаваемую информацию или информацию управления обменом.
    • Поле контрольной суммы представляет собой 32-разрядную циклическую контрольную сумму пакета (CRC).
    • Конечный разделитель является признаком конца пакета. Кроме того, он определяет, является ли данный пакет промежуточным или заключительным в последовательности передаваемых пакетов, а также содержит признак ошибочности пакета (для этого выделены специальные биты).
    • Байт состояния пакета говорит о том, что происходило с данным пакетом: был ли он принят и скопирован в память приемника. По нему отправитель пакета узнает, дошел ли пакет по назначению и без ошибок или его надо передавать заново.

    Отметим, что больший допустимый размер передаваемых данных в одном пакете по сравнению с сетью Ethernet может стать решающим фактором для увеличения производительности сети. Теоретически для скорости передачи 16 Мбит/с длина поля данных может достигать даже 18 Кбайт, что очень важно при передаче больших объемов данных. Но даже при скорости 4 Мбит/с благодаря маркерному методу доступа сеть Token-Ring часто обеспечивает большую фактическую скорость передачи, чем более быстрая сеть Ethernet (10 Мбит/с), особенно при больших нагрузках (свыше 30-40%), когда заметно сказывается несовершенство метода CSMA/CD, который в этом случае тратит много времени на разрешение повторных конфликтов.

    Помимо маркера и обычного пакета, в сети Token-Ring может передаваться специальный управляющий пакет, служащий для прерывания передачи. Он может быть послан в любой момент и в любом месте потока данных. Пакет этот состоит всего из двух однобайтовых полей - начального и конечного разделителей описанного формата.

    Интересно, что в более быстрой версии Token-Ring (16 Мбит/с и выше) применяется так называемый метод раннего формирования маркера (ETR -Early Token Release). Он позволяет избежать непроизводительного использования сети в то время, пока пакет данных не вернется по кольцу к своему отправителю. Метод ETR сводится к тому, что сразу после передачи своего пакета, присоединенного к маркеру, любой абонент выдает в сеть новый свободный маркер, то есть все другие абоненты могут начинать передачу своих пакетов сразу же после окончания пакета предыдущего абонента, не дожидаясь, пока он завершит обход всего кольца сети.