Какие смартфоны самсунг с экранами ogs. Что такое GFF дисплей в смартфоне. Что нас ждет

О вкусах не спорят, некоторые из нас ищутсмартфон с огромным дисплеем, для удобного просмотра различного контента, другие - чувствуют себя комфортно с портативными моделями с меньшим экраном, которыми легко управлять одной рукой.

Существуют более важные характеристики, чем цвет корпуса или размер экрана - это технические характеристики. При чтении в спецификациях функций экрана, вы можете найти довольно много деталей, сокращений и цифр. Вы, возможно, уже ознакомлены с такими данными и точно знаете их значение. Если нет, то мы подобрали несколько общих особенностей, которые вы можете использовать для справки о функциональности экрана.

Типы экранов смартфонов.

  • Цифры .

При взгляде на спецификации экрана смартфона, вы увидите несколько общих цифр, указывающие разрешение экрана.

1080p: эта спецификация также известна, как "Full HD". Является одним из самых популярных разрешений высокой четкости для экранов, измеряется в количестве 1920 на 1080 пикселей.

Дисплеи, с разрешением 1080p, довольно часто используют для мощных смартфонов, которые обеспечивают высокое качество изображения. Такое разрешение больше подходит для больших экранов, когда разница будет более заметна, но ряд более мелких смартфонов также могут поставляться с этим типом разрешения. Это можно объяснить тем, что производитель пытается произвести впечатление на потенциальных покупателей высоким качеством изображения. В качестве примера, для 5 дюймового телефона, дисплей, с разрешением 1920 × 1080, означает лишь чрезмерную плотность - 440 точек на дюйм (пикселей на дюйм).

720p: эта спецификация известна, как нижний показатель четкости, с разрешением 1280 на 720 пикселей, и обычно используется на небольших экранах.

При этом большое количество пользователей на самом деле не смогут сказать, в чем разницу между full HD и lower HD. Даже с использованием 20/20 vision, эту разница, очень трудно отличить, особенно на небольших экранах. В тоже время, экран Full HD оптимален для просмотра большого количества мелких элементов пользовательского интерфейса на экране, этот фактор становится заметен при использовании веб-браузера.

  • Имена .

Вместе с используемыми числовыми определениями, вы также можете заметить конкретные названия или аббревиатуры, как те, которые используются Apple, Samsung и другие известные производители.

Retina Display - это фирменное название экрана, который устанавливается на устройствах компании Apple, имеющий разрешение 1136 × 640 пикселей. Технология Retina Display, за счет большей плотности пикселей, позволяет улучшить четкость изображения без необходимости увеличивать дисплей.

HD Super AMOLED - имя от Samsung для дисплеев смартфонов, которые поддерживают OLED технологии. OLED экраны известны благодаря своей сверх яркости, по сравнению с ЖК, а также за счет демонстрации лучших функций экономии ресурса батареи.

PureMotion HD + - разрешение 1,280 × 768 пикселей поставляется с различными свойствами. Название относится к Nokia.

Clear Black – снова Nokia. Это название антибликового фильтра, используемого на экранах Nokia.

Другие технические характеристики экрана, которые вы часто будете видеть, также описывают технологии, используемые в производстве экрана.

IPS - это тип ЖК-экрана, произведенный особым образом, чтобы обеспечить более четкое изображение и широкий угол обзора.

OGS – использование одного стекла. Это сенсорная технология, которая уменьшает толщину дисплея, путем удаления одного из слоев стекол. Используется в традиционных емкостных сенсорных экранах.

Конечно, в настоящее время производители вносят различные дополнения к основными спецификациям и наш список далеко не полон. Мы выделили основные спецификации, которые способны влиять на яркость, четкость, плавность работы системы. Читайте внимательно характеристики экрана смартфона, чтобы сделать обоснованный выбор.

Технология Glass Solution (OGS) позволяет создавать недорогие проекционно-емкостные сенсорные дисплеи. Как это работает?

Есть несколько причин, по которым емкостные сенсорные дисплеи намного дороже, чем резистивные. Одна из причин – большая поверхность склеивания защитного стекла с датчиком касания. Если при склеивании происходит ошибка, то и защитное стекло, и дорогостоящий сенсор отправляются на утилизацию. Компания Densitron – одна из немногих, которая поставляет дисплеи и сенсоры, которые можно разделить в случае ошибочного действия на этапе склеивания. Благодаря этому значительно снижается количество бракованных изделий.

Все компоненты – на одной стеклянной подложке

С появлением технологии OGS емкостные сенсорные панели вышли на тот же уровень стоимости, что и резистивные. Вместо склеивания нескольких слоев – сенсорной подложки и пленки с защитным стеклом – OGS позволяет объединить все компоненты на одной стеклянной подложке. Таким образом, стоимость производства значительно снижается. OGS-дисплеи по запросу клиента могут принимать различную конфигурацию, требуемую жесткость и прочность в зависимости от толщины стеклянной подложки.

Наряду с простотой механической конструкции OGS-панели обладают еще одним преимуществом: они очень тонкие. В качестве стандартной толщины стекла приняты значения 1,2 мм и 1,8 мм. Если нужен особенно прочный дисплей – например, для банкоматов – производится стекло толщиной 3,4 мм. Возможно изготовление миниатюрных дисплеев толщиной менее 1,2 мм – например, для умных часов. Размеры OGS-экрана могут достигать 480 мм х 340 мм. Таким образом, диагональ экрана может составлять от менее 1,44"" (3,66 см) до 15,6"" (39,94 см).

Свобода выбора формы

Как и в случае обычных проекционно-емкостных датчиков (P-CAP), область сенсора может покрывать только площадь дисплея, а может покрывать еще и другие рабочие поверхности. Технология OGS позволяет проделать прямо в экране отверстие или сделать закругления. Также возможно проводить химическую закалку поверхности и любую другую обработку защитного стекла, включая полихромную печать на нем. Технология OG Sможет использоваться для создания PM- и AMOLED-дисплеев.

Широкие возможности создания различных форм предполагают применение в самых различных отраслях. Экран OGS может принимать почти любую плоскую форму. Если защитное стекло доходит до самой границы изделия, то после соответствующей шлифовки и полировки оно будет служить стильным элементом украшения изделия. Кроме того, стекло обладает несомненными достоинствами: высокой твердостью (до 9Н) и высокой прочностью. Было успешно проведено испытание, в ходе которого на стекло толщиной 1,1 мм с высоты 1 м падал стальной шарик.

Благодаря защитному стеклу дисплей и сенсор становятся водо- и пыленепроницаемы. Полная герметичность обусловливает соответствие классу влаго- и пылезащищенности IP65. После соединения контактов дисплея / сенсора защитное стекло приклеивается к задней части корпуса. Склеивающая лента 3M даже может быть заранее наклеена одной стороной на корпус, чтобы при окончании сборки можно было просто снять защитную пленку и наклеить сенсорный дисплей.

Проводники из индий тин-оксида (ИТО) толщиной всего 5 мкм позволяют сделать сенсор очень тонким. Дисплей на основе OGS-технологии состоит из различных слоев: ИТО-электродов, сквозных соединений, слоев изоляции и слоев серебра. Процесс должен постоянно находиться под контролем, поскольку структура дисплей состоит из очень тонких и сложных структур. На предпрятии Densitron в городе Шэньчжень специалисты добиваются высочайшей точности: выход продукта составляет почти 100%.

Мультисенсор для 10 пальцев

Соединения между отдельными электродами, расположенными параллельно и перпендикулярно друг другу, выполнены с использованием серебрения, поэтому они могут контактировать и посредством углеродных включений. При проектировании OGS-стекла необходимо предусматривать достаточно места для проводников. Обычные проекционно-емкостные предполагают меньше места для проводников на поверхности сенсорной зоны, поскольку проводники проводятся на двух независимых слоях, что облегчает их разводку.

Обычные контроллеры проекционно-емкостных дисплеев монтируются вместе с сенсором на плоский кабель и подходят для Android, Microsoftи Linux. Дисплей справляется с большим количеством одновременных касаний (до 10). Предусмотрены разъемы I 2 Cили USB. С учетом количества каналов контроллера (от 30 до 68) обслуживание дисплеев на базе проекционно-емкостной технологии должно осуществляться не просто в тонких резиновых перчатках, но и в толстых шерстяных перчатках (наличие воды или грязи не учитывается). С помощью программного обеспечения возможно установить такие параметры, как чувствительность, обнаружение резкого изменения яркости (случайный набор команд) и минимальный размер пальцев. В результате удобство обслуживания сохраняется как при обычных условиях, так и при нахождении дисплея в агрессивной среде.

Преимущества дизайна защитной оболочки

Экраны на основе OGS – это идеальное решение при необходимости создания нестандартного дизайна. Существуют еще тонкопленочные и проекционно-емкостные модули с обычным дизайном защитного стекла, края которого прижаты черной рамой, а размер и форма зависят от формата дисплея. OGS-модуль легко интегрировать в прибор с дисплеем любой формы. Это прекрасная возможность сэкономить, учитывая величину затрат на любые нестандартные конструкции. В качестве альтернативного варианта можно сначала использовать стандартный дисплей, что также снизит начальную стоимость прибора.

Проекционно-емкостные технологии и особенно OGS идеально подходят для применения в медицине, поскольку благодаря отсутствию грязных рамок на фронтальных поверхностях экранов не возникает необходимости использования агрессивных моющих средств, которые могут попасть внутрь прибора. Для мобильных устройств OGS-экраны также подходят идеально: поскольку защитное стекло и сенсор имеют толщину не более 1,2, устройство будет тонким и легким.

Как из разнообразия современных смартфонов подобрать то, что подходит именно Вам? Сегодня команда bad-android подготовила материал с полезными советами на тему подбора дисплеев.

Как не переплатить за устройство? Как по типу дисплея разобраться чего от него ожидать?

Типы матриц

В современных смартфонах используются три основные типа матриц.

Первая из них под названием - основана на органических светодиодах. Остальные два типа основаны на жидких кристиалах - IPS и TN+film .

Нельзя не упомянуть про часто встречающуюся аббревиатуру TFT .

TFT - это тонкопленочные транзисторы, управляющие субпикселями дисплеев (субпиксели отвечают за три основных цвета, на основание которых формируются "полноценные" "многоцветные" пиксели, о которых мы поговорим чуть позже).

Технология TFT применяется во всех трех типах матриц, перечисленных выше. Именно поэтому часто встречающееся сравнение TFT и IPS является абсурдным по сути.

Много лет основным материалом для TFT-матриц являлся аморфный кремний. На данный момент запущено усовершенствованное производство TFT-матриц, в котором основной материал - поликристалличесий кремний , значительно увеличивающий энергоэффективность. Также уменьшился непосредственно размер транзисторов, что позволяет достигать высочайших показателей ppi (плотности пикселей).

Итак, с базой матриц разобрались, настало время поговорить непосредственно о типах данных матриц.

TN+film матрица

Именно эти матрицы появились первыми в смартфонах. На данный момент они остаются самыми примитивными и, соответственно, дешевыми.

Достоинства:

    Доступная стоимость

Н едостатки:

    Малые углы обзора (максимум 60 градусов)

    Инвертирование изображения даже при небольших углах наклона

    Низкий уровень контрастности

    Скудная цветопередача

Большинство производителей практически отказалось от использования данного типа матриц из-за слишком большого количества недочетов.

IPS матрица

На данный момент именно этот тип матриц является наиболее распространенным. Также IPS матрицы иногда обозначаются аббревиатурой SFT .

История IPS -матриц берет свое начала несколько десятилетий назад. За этот период было разработано множество различных модификаций и улучшений IPS -дисплеев.

При перечислении недостатков и достоинств IPS необходимо учитывать конкретный подтип . Обобщая, для перечня сильных сторон IPS возьмем наилучший подтип (соответственно, самый дорогостоящий), а для минусов будем иметь в виду дешевый подтип.

Достоинства:

    Отличные углы обзора (максимум 180 градусов)

    Качественная цветопередача

    Возможность выпуска дисплеев с высоким ppi

    Неплохая энергоэффективность

Недостатки:

    Выцветание картинки при наклонах дисплея

    Возможно перенасыщение или наоборот недостаточная насыщенность цвета

AMOLED матрица

Матрица обеспечивает наиболее глубокий черный цвет, сравнительно с двумя другими типами матриц. Но так было не всегда. Первые AMOLED-матрицы обладали неправдоподобной цветопередачей и недостаточной глубиной цвета. Присутствовала кислотность картинки, слишком интенсивная яркость.

До сих пор из-за внутренних некорректных настроек некоторые дисплеи по восприятию практически идентичны к IPS. А вот в super-AMOLED дисплеях все изъяны успешно пофиксили.

При перечне достоинств и недостатков возьмем обычную AMOLED-матрицу.

Достоинства:

    Наиболее качественная картинка среди всех существующих типов матриц

    Низкое энергопотребление

Недостатки:

    Изредка встречающийся неодинаковый срок работы светодиодов (разных цветов)

    Необходимость тщательного настраивания AMOLED дисплея

Подведем промежуточный итог. Очевидно, что лидируют по качеству изображения матрицы. Именно AMOLED дисплеи устанавливаются на самые топовые устройства. На втором месте находятся IPS матрицы, но с ними следует быть внимательным: производители редко указывают подтип матрицы, а именно это играет ключевую роль в итоговом уровне изображения. Однозначное и твердое "нет" следует сказать девайсам с TN+film матрицам.

Субпиксели

Определяющим фактором в конечном качестве дисплея часто являются скрытые характеристики дисплеев. На восприятие изображения сильное влияние оказывают субпиксели .

В случае с LCD ситуация достаточно простая: каждый цветной (RGB ) пиксель состоит из трех субпикселей. Форма субпикселей зависит от модификации технологии - субпиксель может иметь форму "галочки" или прямоугольника.

В реализации дисплеев в плане субпикселей все несколько сложнее. В этом случае источником освещения выступают сами субпиксели. Как известно, человеческий глаз менее чувствителен к синему и красному цвету, в отличие от зеленого. Именно поэтому повторение паттерна IPS субпикселей значительно повлияло бы на качество картинки (естественно, в худшую сторону). Для сохранности реалистичности цветопередачи была изобретена технология .

Суть технологии заключается в использовании двух пар пикселей: RG (red-green) и BG (blue-green), которые, в свою очередь, состоят из соответствующих субпикселей соответствующих цветов. Применена комбинация форм субпикселей: зеленые имеют вытянутую форму, а красные и синие практически квадратные.

Технология оказалась не слишком-то и удачной: белый цвет был откровенно “грязным”, а также появились зазубринки на стыках разных оттенков. При невысоком показателе ppi становилась видна сетка из субпикселей. Такие матрицы были установлены на ряд смартфонов, в том числе флагманов. Последним флагманом, которому “посчастливилось” заполучить PenTile-матрицу стал Samsung Galaxy S III .

Естественно, что оставлять ситуацию с некачественной реализацией субпикселей в таком же состоянии было нельзя, поэтому вскоре был произведен апгрейд выше описываемой технологии, получивший приставку Diamond .

При помощи увеличения ppi Diamond PenTile позволила избавиться от проблемы с зазубренными границами между цветами, а белый стал гораздо “чище” и приятнее глазу. И именно эта разработка установлена во все флагманы компании Samsung, начиная с Galaxy S4.

А вот IPS -матрицы хотя и считаются в целом слабее ’овских, однако, с такими проблемами никогда не сталкивались.

Какой вывод можно сделать? Следует обязательно обращать внимание на количество ppi в случае приобретения смартфона с -матрицей. Качественная картинка возможна только при показателе от 300 ppi . А вот с IPS матрицами таких строгих ограничений нет.

Инновационные технологии

Время не стоит на месте, талантливые инженеры продолжают кропотливо работать над улучшением всех характеристик смартфонов, в том числе и над матрицами. Одной из последних серьезных разработок является технология OGS .

OGS представляет из себя воздушную прослойку между самим экраном и проекционно-емкостным сенсором. В данном случае технология оправдала ожидания на 100%: увеличилось качество цветопередачи, максимальная яркость и углы обзора.

И за последние несколько лет OGS настолько внедрилось в смартфоны, что не встретить реализацию дисплея “гамбургером” с начинкой из воздушной прослойки можно разве что на самых простых устройствах.

В поиске оптимизации дисплеев конструкторы наткнулись на еще одну интересную возможность улучшить картинку на телефонах. В 2011 году стартовали эксперименты над формой стекла. Пожалуй, наиболее распространенной формой стекла среди необычных стало 2.5D - при помощи загнутых краям стекла грани становятся более гладкими, а экран обьемным.


Компания HTC выпустила смартфон Sensation , стекло которого было вогнуто в центре дисплея. По мнению инженеров HTC, таким образом увеличивается защищенность от царапин и ударов. Но широкого применения вогнутое к центру стекло так и не получило.

Более популярной стала концепция изгибания самого дисплея, а не только стекла, как это было сделано в . Одна из боковых граней дисплея получила изогнутую форму.


Весьма интересной характеристикой, на которую следует обратить внимание при покупке смартфона, является чувствительность сенсора . В часть смартфонов устанавливается сенсор с повышенной чувствительностью, что позволяет полноценно пользоваться дисплеем даже в обычных перчатках. Также часть устройств оснащается индуктивной подложкой для поддержки стилусов.

Так что для любителей попереписываться на морозе или пользоваться стилусом чувствительный сенсор однозначно пригодится.

Известные истины

Не секрет, что разрешение экрана также сильно влияет на конечный уровень изображения. Без лишних комментариев предлагаем Вашему вниманию таблицу соответствия диагонали дисплея и разрешения.

Заключение

Каждая матрица имеет свои особенности и срытые характеристики. Следует быть осторожным с -дисплеями, вернее, с показателем плотности пикселей ppi: если значение менее 300 ppi , то качество картинки Вас откровенно разочарует .

Для IPS -матриц важен подтип , причем в зависимости от подтипа стоимость смартфона логично пропорционально увеличивается.

Изогнутое стекло 2.5D значительно повысит привлекательность картинки, как и технология OGS .

Вопрос размера дисплея - сугубо индивидуальный, но при многодюймовых "лопатах" уместным будет высокое разрешение.

Желаем вам приятных покупок, друзья!

Оставайтесь с нами, впереди еще много интересного.

Статьи и Лайфхаки

В экранах смартфонов иногда используется технология под названием Full Lamination, или полная ламинация. акцентируют внимание на «прогрессивности» таких дисплеев по сравнению с «обыкновенными».

При этом понять, чем же они всё-таки лучше, удается далеко не сразу. Постараемся внести ясность в данный вопрос.

О чем вообще идет речь

Жидкокристаллические (LCD) матрицы экранов появились достаточно давно, и с тех пор непрерывно совершенствуются.

Особенно это касается , используемых в мобильных устройствах, ведь к ним, по сравнению с телевизорами и мониторами, предъявляется ряд дополнительных требований.

Сенсорные экраны, по сравнению с обычными, содержат один или несколько дополнительных слоев, позволяющих им реагировать на прикосновения.

И вот именно в отношении их конфигурации и разворачивается битва за каждую долю миллиметра толщины.

GFF


Полностью название технологии, о которой идет речь, звучит как GFF (Glass-to-film-to-film) full lamination.

Еще несколько лет назад были распространены GG (glass-to-glass) дисплеи, в которых использовалось два слоя стекла, отделенных от сенсорного слоя и самой TFT матрицы воздушной прослойкой.

Они имели ряд недостатков: сравнительно большую толщину, низкую технологичность и достаточно высокую стоимость.

Им на смену пришли GFF матрицы, в которых один из слоев стекла был заменен двумя полимерными пленками, отделяющими сенсорные слои оксида индия-олова (ITO) от TFT матрицы и покровного стекла. Эта технология также была известна как On-Сell.

Результатом стало снижение толщины сенсорного слоя с 0,65-1,25 мм у GG матриц до 0,25-0,5 мм у экранов, выполненных по технологии GFF Full lamination. Заодно снизилась себестоимость изготовления, что отразилось на цене конечного продукта – самих гаджетов.

In-Cell

Какой бы прогрессивной ни была технология, со временем неизбежно появится нечто более совершенное. В конце 2012 года на рынке появился первый гаджет, использующий новую – Apple iPhone 5.

В данном случае «бутерброд» из слоев еще более похудел: сенсорный слой был интегрирован непосредственно в поверхность TFT матрицы, что позволило добиться еще большего выигрыша в толщине дисплея.

Крупные вендоры, специализирующиеся на производстве экранов для мобильных устройств, быстро подхватили новинку, а компания LG Displays, услугами которой пользуется, в том числе, и , представила свой вариант технологии под названием AIT.

Скорее всего, это было связано с какими-то тонкостями, касающимися интеллектуальной собственности.

OGS


Иногда в источниках в связи с Full lamination встречается название OGS, представляющее собой аббревиатуру One Glass Solution.

В заключение

На сегодняшний день технологию GFF Full lamination можно считать устаревшей. Она окончательно уступила место более прогрессивной In-Cell, и дисплеи с ее использованиям уже не производятся.

Нелишне также отметить, что всё вышеописанное относится исключительно к сенсорному слою экрана, никак не затрагивая параметры самой IPS матрицы.

Поэтому никакого отношения к разрешению, яркости или четкости изображения данная технология не имеет, что бы там ни мололи рекламные проспекты. Характеристики, которые реально имеют к ней отношение – толщина дисплея и время отклика.

До массового распространения смартфонов, при покупке телефонов мы оценивали их, главным образом, по дизайну и лишь изредка обращали внимание на функциональные возможности. Времена изменились: теперь все смартфоны имеют примерно одинаковые возможности, а при взгляде только на фронтальную панель, один гаджет едва можно отличить от другого. На передний план вышли технические характеристики устройств, и самой важной среди них для многих является экран. Мы расскажем, что же кроется за терминами TFT, TN, IPS, PLS, и поможем подобрать смартфон с нужными характеристиками экрана.

Типы матриц

В современных смартфонах главным образом применяются три технологии производства матриц: две основаны на жидких кристаллах - TN+film и IPS, а третья - AMOLED - на органических светодиодах. Но прежде чем начать, стоит рассказать об аббревиатуре TFT, являющейся источником множества заблуждений. TFT (thin-film transistor) - это тонкоплёночные транзисторы, которые используются для управления работой каждого субпикселя современных экранов. Технология TFT применяется во всех перечисленных выше типах экранов, включая AMOLED, поэтому, если где-то говорится о сравнении TFT и IPS, то это в корне неверная постановка вопроса.

В большинстве TFT-матриц используется аморфный кремний, но недавно в производство стали внедряться TFT на поликристаллическом кремнии (LTPS-TFT). Главные преимущества новой технологии - уменьшение энергопотребления и размеров транзисторов, что позволяет достигать высоких значений плотности пикселей (более 500 ppi). Одним из первых смартфонов с IPS-дисплеем и матрицей LTPS-TFT стал OnePlus One.

Смартфон OnePlus One

Теперь, когда мы разобрались с TFT, перейдём непосредственно к типам матриц. Несмотря на большое разнообразие разновидностей LCD, все они имеют один и тот же базовый принцип работы: приложенный к молекулам жидких кристаллов ток задаёт угол поляризации света (он влияет на яркость субпикселя). Поляризованный свет затем проходит через светофильтр и окрашивается в цвет соответствующего субпикселя. Первыми в смартфонах появились наиболее простые и дешёвые матрицы TN+film, название которых часто сокращается до TN. Они имеют малые углы обзора (не более 60 градусов при отклонении от вертикали), причём даже при небольших наклонах изображение на экранах с такими матрицами инвертируется. Среди других недостатков TN-матриц - малая контрастность и низкая точность цветопередачи. На сегодняшний день такие экраны используются только в самых дешёвых смартфонах, а подавляющее большинство новых гаджетов имеют уже более совершенные дисплеи.

Наиболее распространённой в мобильных гаджетах сейчас является технология IPS, иногда обозначаемая как SFT. IPS-матрицы появились 20 лет назад и с тех пор выпускались в различных модификациях, число которых приближается к двум десяткам. Тем не менее, выделить среди них стоит те, которые являются наиболее технологичными и активно используются на данный момент: AH-IPS от компании LG и PLS - от компании Samsung, которые весьма близки по своим свойствам, что даже являлось поводом для судебного разбирательства между производителями. Современные модификации IPS имеют широкие углы обзора, которые близки к 180 градусам, реалистичную цветопередачу и обеспечивают возможность создания дисплеев с высокой плотностью пикселей. К сожалению, производители гаджетов практически никогда не сообщают точный тип IPS-матриц, хотя при использовании смартфона различия будут видны невооружённым глазом. Для более дешёвых IPS-матриц характерно выцветание картинки при наклонах экрана, а также невысокая точность цветопередачи: изображение может быть либо слишком «кислотным», либо, напротив, «блёклым».

Что касается энергопотребления, то в жидкокристаллических дисплеях оно по большей части определяется мощностью элементов подсветки (в смартфонах для этих целей используются светодиоды), поэтому потребление матриц TN+film и IPS можно считать примерно одинаковым при совпадающем уровне яркости.

На LCD совершенно не похожи матрицы, созданные на основе органических светодиодов (OLED). В них источником света служат сами субпиксели, представляющие собой сверхминиатюрные органические светодиоды. Так как нет необходимости во внешней подсветке, такие экраны можно сделать тоньше жидкокристаллических. В смартфонах применяется разновидность технологии OLED - AMOLED, которая использует активную TFT-матрицу для управления субпикселями. Именно это позволяет AMOLED отображать цвета, тогда как обычные панели OLED могут быть только монохромными. AMOLED-матрицы обеспечивают самый глубокий чёрный цвет, поскольку для его «отображения» требуется лишь полностью отключить светодиоды. По сравнению с LCD, такие матрицы обладают более низким энергопотреблением, особенно при использовании тёмных тем оформления, в которых чёрные участки экрана вовсе не потребляют энергию. Другая характерная особенность AMOLED - слишком насыщенные цвета. На заре своего появления такие матрицы действительно имели неправдоподобную цветопередачу, и, хотя подобные «детские болячки» давно в прошлом, до сих пор большинство смартфонов с такими экранами имеют встроенную настройку насыщенности, которая позволяет приблизить изображение на AMOLED по восприятию к IPS-экранам.

Другим ограничением AMOLED экранов раньше являлся неодинаковый срок службы светодиодов различных цветов. Через пару лет использования смартфона это могло привести к выгоранию субпикселей и остаточному изображению некоторых элементов интерфейса, в первую очередь - на панели уведомлений. Но, как и в случае с цветопередачей, эта проблема давно ушла в прошлое, и современные органические светодиоды рассчитаны минимум на три года беспрерывной работы.

Подведём краткий итог. Наиболее качественное и яркое изображение на данный момент беспечивают AMOLED-матрицы: даже Apple, по слухам, в одном из следующих iPhone будет использовать такие дисплеи. Но, стоит учитывать, что все новейшие разработки компания Samsung, как основной производитель таких панелей, оставляет себе, а другим производителям продаёт «прошлогодние» матрицы. Поэтому, при выборе смартфона не от Samsung стоит смотреть в сторону качественных IPS-экранов. А вот гаджеты с дисплеями TN+film выбирать ни в коем случае не стоит - сегодня эта технология уже считается устаревшей.

На восприятие изображения на экране может влиять не только технология матрицы, но и рисунок субпикселей. Впрочем, с LCD всё довольно просто: в них каждый RGB-пиксель состоит из трёх вытянутых субпикселей, которые, в зависимости от модификации технологии, могут иметь форму прямоугольника или «галочки».

В AMOLED-экранах всё интереснее. Поскольку в таких матрицах источниками света являются сами субпиксели, а человеческий глаз более чувствителен к чистому зелёному свету, чем к чистому красному или синему, использование в AMOLED того же рисунка, что и в IPS, ухудшило бы цветопередачу и сделало картинку нереалистичной. Попыткой решить эту проблему стала первая версия технологии PenTile, в которой использовались пиксели двух типов: RG (красный-зелёный) и BG (синий-зелёный), состоящие из двух субпикселей соответствующих цветов. Причём, если красные и синие субпиксели имели форму, близкую к квадратам, то зелёные больше напоминали сильно вытянутые прямоугольники. Недостатками такого рисунка были «грязный» белый цвет, зазубренные края на стыке разных цветов, а при низком ppi - четко видимая сетка подложки субпикселей, появляющаяся из-за слишком большого расстояния между ними. К тому же, разрешение, указываемое в характеристиках таких устройств, было «нечестным»: если IPS HD матрица имеет 2764800 субпикселей, то AMOLED HD матрица - всего 1843200, что приводило к видимой невооружённым глазом разнице в чёткости IPS- и AMOLED-матриц с, казалось бы, одинаковой плотностью пикселей. Последним флагманским смартфоном с такой AMOLED матрицей стал Samsung Galaxy S III.

В смартпэде Galaxy Note II южнокорейская компания сделала попытку отказа от PenTile: экран устройства имел полноценные RBG-пиксели, хотя и с необычным расположением субпикселей. Тем не менее, по неясным причинам, в дальнейшем Samsung от такого рисунка отказалась - возможно, производитель столкнулся с проблемой дальнейшего увеличения ppi.

В своих современных экранах Samsung вернулась к RG-BG пикселям с использованием нового типа рисунка, который был назван Diamond PenTile. Новая технология позволила сделать белый цвет более натуральным, а что касается зазубренных краёв (например, вокруг белого объекта на чёрном фоне были чётко видны отдельные красные субпиксели), то эта проблема была решена ещё проще - увеличением ppi до такой степени, что неровности перестали быть заметны. Diamond PenTile используется во всех флагманах Samsung начиная с модели Galaxy S4.

В завершении этого раздела стоит сказать ещё об одном рисунке AMOLED-матриц - PenTile RGBW, который получается добавлением к трём основным субпикселям четвёртого, белого. До появления Diamond PenTile такой рисунок был единственным рецептом чистого белого цвета, но он так и не получил широкого распространения - одним из последних мобильных гаджетов с PenTile RGBW стал планшет Galaxy Note 10.1 2014. Сейчас AMOLED-матрицы с RGBW-пикселями применяются в телевизорах, поскольку в них не требуется высокий показатель ppi. Справедливости ради, также упомянем, что RGBW-пиксели могут использоваться и в LCD, но примеры использования таких матриц в смартфонах нам не известны.

В отличие от AMOLED, качественные IPS-матрицы никогда не испытывали проблем в качестве, связанных с рисунком субпикселей. Тем не менее, технология Diamond PenTile, вместе с высокой плотностью пикселей, позволила AMOLED догнать и обогнать IPS. Поэтому, если вы выбираете гаджеты придирчиво, не стоит покупать смартфон с экраном AMOLED, у которого плотность пикселей менее 300 ppi. При более высокой плотности никакие дефекты заметны не будут.

Конструктивные особенности

На одних только технологиях формирования изображений разнообразие дисплеев современных мобильных гаджетов не заканчивается. Одна из первых вещей, за которую взялись производители - воздушная прослойка между проекционно-ёмкостным сенсором и непосредственно дисплеем. Так появилась технология OGS, объединяющая сенсор и матрицу в один стеклянный пакет в виде сэндвича. Это дало значительный рывок по качеству изображения: увеличилась максимальная яркость и углы обзора, была улучшена цветопередача. Само собой, толщина всего пакета также была уменьшена, что позволило создать более тонкие смартфоны. Увы, но недостатки у технологии тоже есть: теперь, если вы разбили стекло, поменять его отдельно от дисплея практически нереально. Но преимущества в качестве всё же оказались важнее и теперь не-OGS экраны можно встретить разве что в самых дешёвых аппаратах.

Популярными в последнее время стали и эксперименты с формой стекла. И начались они не недавно, а как минимум в 2011 году: HTC Sensation имел вогнутое в центре стекло, которое, по замыслу производителя, должно было защитить экран от царапин. Но на качественно новый уровень такие стёкла вышли с появлением «2.5D экранов» с загнутым по краям стеклом, что создаёт ощущение «бесконечного» экрана и делает грани смартфонов более гладкими. Такие стёкла в своих гаджетах активно использует компания Apple, и в последнее время они становятся всё более и более популярными.

Логичным шагом в том же направлении стало изгибание не только стекла, но и самого дисплея, что стало возможным при использовании полимерных подложек вместо стеклянных. Тут пальма первенства, конечно, принадлежит компании Samsung с её смартфоном Galaxy Note Edge, в котором была изогнута одна из боковых граней экрана.

Другой способ предложила компания LG, которая сумела изогнуть не только дисплей, но и весь смартфон по его короткой стороне. Однако LG G Flex и его преемник не завоевали популярности, после чего производитель отказался от дальнейшего выпуска подобных аппаратов.

Также некоторые компании стараются улучшить взаимодействие человека с экраном, работая над его сенсорной частью. Например, некоторые устройства оснащаются сенсорами с повышенной чувствительностью, которые позволяют работать с ними даже в перчатках, а другие экраны получают индуктивную подложку для поддержки стилусов. Первая технология активно используется компаниями Samsung и Microsoft (бывшая Nokia), а вторая - Samsung, Microsoft и Apple.

Будущее экранов

Не стоит думать, что современные дисплеи в смартфонах достигли высшей точки своего развития: технологиям ещё есть куда расти. Одними из самых перспективных являются дисплеи на квантовых точках (QLED). Квантовая точка - это микроскопический кусочек полупроводника, в котором существенную роль начинают играть квантовые эффекты. Упрощенно процесс излучения выглядит так: воздействие слабого электрического тока заставляет электроны квантовых точек изменять энергию, излучая при этом свет. Частота излучаемого света зависит от размера и материала точек, благодаря чему можно добиться практически любого цвета в видимом диапазоне. Учёные обещают, что QLED матрицы будут иметь лучшую цветопередачу, контрастность, более высокую яркость и низкое энергопотребление. Частично технология экранов на квантовых точках используется в экранах телевизоров Sony, а прототипы имеются у LG и Philips, но о массовом применении таких дисплеев в телевизорах или смартфонах речи пока не идёт.

Высока вероятность и того, что в ближайшем будущем мы увидим в смартфонах не просто изогнутые, но и полностью гибкие, дисплеи. Тем более, что почти готовые к массовому производству прототипы таких AMOLED матриц существуют уже пару лет. Ограничением же выступает электроника смартфона, которую гибкой сделать пока невозможно. С другой стороны, крупные компании могут изменить саму концепцию смартфона, выпустив что-то вроде гаджета, показанного на фотографии ниже - нам остаётся только ждать, ведь развитие технологий происходит прямо на наших глазах.