Сетевые технологии, каналы связи и их основные характеристики. Основные понятия и характеристики каналов связи Что такое открытые и закрытые каналы связи

Канал связи - это система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле, представляет только физическую среду распространения сигналов, например, физическую линию связи.

От источника сообщения (говорящего человека) сообщение (речь) поступает на вход передающего устройства (микрофон). Передающее устройство преобразует сообщение в сигналы, которые поступают на вход канала связи. На выходе канала связи приемное устройство (телефонный капсюль) по принятому сигналу воспроизводит переданное сообщение, последнее воспринимается приемником сообщения (слушающим человеком). Передатчик, канал связи, и приёмник формируют систему передачи информации или систему связи.

По назначению системы связи разграничивают каналы телесигнализации, телеизмерения, телеуправления (телекомандные), телеграфные, телефонные, звукового вещания, факсимильные, телевизионного вещания и т.д.

Каналы связи могут иметь много форм, включая каналы отвечающие требованиям хранения данных, которые могут передавать сообщения, как только возникнет ситуация.

Примеры каналов связи включают:

  • · Соединение между инициирующим и оконечным узлами цепи
  • · Буфер, на который сообщения могут быть положены и получены
  • · Выделенный канал, обеспечиваемый передающей средой либо физическим разделением, таким как многопарный кабель, либо электрическим разделением, таким как частотное уплотнение каналов связи или мультиплексирование с временным разделением каналов
  • · Путь для перемещения электрического или электромагнитного сигнала обычно отличается от других параллельных путей
  • · Часть записывающей среды, такой как дорожка или группа дорожек, что позволяет производить чтение или запись станции или устройства звуковоспроизведения
  • · В коммуникационных системах, часть, что соединяет источник данных и приемник данных
  • · Специфическая радиочастота, пара или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением
  • · Пространство в Internet Relay Chat (IRC) сети, в которой участники могут связываться один с другим

Все эти коммуникационные каналы разделяют то свойство, что они переносят информацию, которая переносится через канал сигналом.

Примером канала связи может служить специфическая радиочастота, пара частот или диапазон частот, обычно обозначаемый буквой, номером или кодовым словом и зачастую выделенная международным соглашением. Морское УКВ радио использует некие 88 каналов в УКВ диапазоне для двунаправленной частотно-модулированной голосовой связи. Канал 16, для примера, означает частоту 156,800 МГц.

Телевизионные каналы расположены на частоте, определяющей физической величиной которого являются мегагерцы (МГц). Каждый канал имеет ширину 6 Мгц. Кроме этих физических каналов телевидение также имеет виртуальные каналы. Wi-Fi (беспроводная сеть) представялет собой канал связи, состоящий из нелицензированных каналов 1-13 в диапазоне от 2412 МГц до 2484 МГц с шагом в 5 МГц.

Для оценки качества каналов передачи данных можно использовать следующие характеристики:

    скорость передачи данных по каналу связи;

    пропускную способность канала связи;

    достоверность передачи информации;

    надежность канала связи.

Скорость передачи данных . Различают бодовую (модуляционную) и информационную скорости (bit rate). Информационная скорость - определяется количеством битов, передаваемых по каналу связи за одну секунду бит/с, что в англоязычном варианте обозначается как bps.

Бодовая скорость измеряется в бодах (baud). Эта единица скорости получила свое название по фамилии французского изобретателя телеграфного аппарата Emilie Baudot – Э. Бодо. Бод – это число изменений состояния среды передачи в секунду (или числом изменений сигнала в единицу времени). Именно бодовая скорость определяется полосой пропускания линии. Скорость передачи информации 2400 бод означает, что состояние передаваемого сигнала изменялось 2400 раз в секунду, что эквивалентно частоте 2400 Гц.

Для иллюстрации этих понятий обратимся к передаче цифровых данных по обычным телефонным каналам связи. В самых ранних моделях модемов, эти две скорости совпадали. Современные модемы кодируют несколько битов данных в одном изменении состояния аналогового сигнала и очевидно, что скорость передачи данных и скорость работы канала в этом случае не совпадают. Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число значений модулируемого параметра несущей (переносчика) равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с, т.е. скорость в битах в секунду превышает скорость в бодах. В частности, модемы на 2 400 и 1 200 бит/с передают 600 бод, а модемы на 9 600 и 14 400 бит/с- 2 400 бод.

В аналоговых телефонных сетях скорость передачи данных определяется типом протокола который поддерживают оба модема, участвующие в соединении. Так, современные модемы работают по протоколам V.34+ со скоростью до 33600 бит/с или по протоколу асимметричного обмена данными V.90 со скоростью передачи до 56 Kbps.

Стандарт V.34+ позволяет работать по телефонным линиям практически любого качества. Первоначальное соединение модемов происходит по асинхронному интерфейсу на минимальной скорости 300 бит/с, что позволяет работать на самых плохих линиях. После тестирования линии выбираются основные параметры передачи (частота несущей 1,6-2,0 КГц, способ модуляции, переход в синхронный режим) которые в последствии могут динамически изменяться без разрыва связи, адаптируясь к изменению качества линии.

Протокол V.90 был принят Международным Союзом Электросвязи (МСЭ) в феврале 1998 г. В соответствии с этим стандартом модемы, установленные у пользователя, могут принимать данные от провайдера сети (входящий поток – Downstream) на скорости 56 Kbps, а посылать (исходящий поток – Upstream) – на скорости до 33,6 Kbps. Достигается это за счет того, что данные на узле сети, подключенному к цифровому каналу, подвергаются только цифровому кодированию, а не аналого-цифровому преобразованию, которое всегда вносит шум дискретизации и квантования. На стороне пользователя из-за "последней аналоговой мили" происходит и цифро-аналоговое (в модеме) и аналого-цифровое преобразование (на АТС), поэтому увеличение скорости невозможно. Очевидно, что применить такую схему удается только там, где один из модемов имеет доступ к цифровому каналу. Практически только провайдер сети Интернет может быть связан с АТС пользователя цифровым каналом.

Для соединений типа абонент-абонент по коммутируемой телефонной сети общего пользования новая технология непригодна и работа возможна только на скорости не выше 33,6 Kbps.

Скорости передачи цифровой информации для ЛВС различных типов приведены в таблице 2.1, а для глобальных сетей в таблице 2.2.

Таблица 2.1

Тип сети (протокол канального уровня)

Вид линии передачи данных

Толстый коаксиальный кабель (10Base-5)

Тонкий коаксиальный кабель (10base-2)

Неэкранированная витая пара UTP категории 3 (10Base-T)

Оптоволокно (10Base-F)

Оптоволокно (100Base-FX)

Gigabit Ethernet

Многомодовое оптоволокно (1000Base-SX)

Одномодовое оптоволокно (1000Base-LX)

Твинаксиальный кабель(1000Base-СX)

Token Ring (High Speed Token Ring)

Оптоволокно

FDDI (Fiber Distributed Data Interface)

Оптоволокно

Таблица 2.2

Иерархия скоростей цифровых каналов глобальных сетей

Тип сети

Тип интерфейса и линии передачи данных

Скорость передачи данных, Мбит/с

T1/E1, кабель из 2-ух витых пар

T2/E2,коаксиальный кабель

T3/E3, коаксиальный и оптический кабель или радиолинии СВЧ

STS-3, OC-3/STM-1

STS-9, OC-9/STM-3

STS-12, OC-12/STM-4

STS-18, OC-18/STM-6

STS-24, OC-24/STM-8

STS-36, OC-36/STM-12

STS-48, OC-48/STM-16

BRI (базовый)

PRI (специальный)

Абонент-сеть (Upstream)

Сеть-абонент (Downstream)

На ВОЛС достигнуты рекордные скорости передачи информации. В экспериментальной аппаратуре с использованием метода мультиплексирования с разделением каналов по длинам волн (WDM - Wavelengths Division Multiplexing) достигнута скорость 1100 Гбит/с на расстоянии 150 км. В одной из действующих систем на основе WDM передача идет со скоростью 40 Гбит/с на расстояния до 320 км. В методе WDM выделяется несколько несущих частот (каналов). Так, в последней упомянутой системе имеются 16 таких каналов вблизи частоты 4*10 5 ГГц, отстоящих друг от друга на 10 3 ГГц, в каждом канале достигается скорость 2,5 Гбит/с.

Максимально возможная информационная скорость, пропускная способность C (bandwidth ) связана с полосой пропускания F (точнее с верхней частотой полосы пропускания) канала связи формулой Хартли-Шеннона. Пусть N – число возможных дискретных значений сигнала, например число различных значений модулируемого параметра. Тогда на одно изменение величины сигнала, в соответствии с формулой Хартли, приходится не более I=log 2 N бит информации.

Максимальную информационную скорость передачи можно определить как

С = log 2 N / t,

где t - длительность переходных процессов, приблизительно равная (3-4)Т В, а Т В = 1/(2πF). Тогда

бит/с, (2.1)

В случае канала с помехами количество различимых значений модулированного сигнала N должно быть ≤ 1+A, где A - отношение мощностей сигнала и помехи.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его реальная или эффективная скорость , которая оценивается количеством знаков (символов), передаваемых по каналу за секунду (cps, character per second), не включая служебную (например, биты начала и конца блока, заголовки блоков и контрольные суммы).

Эффективная скорость зависит от ряда факторов, среди которых не только скорость передачи данных, но и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Например, так как в среднем, при асинхронном методе передачи данных через модем каждым 10 переданным битам соответствует 1 байт или 1 символ сообщения, то 1 cps=10 bps. Для повышения эффективной скорости передачи используются различные методы сжатия информации, реализуемые как самими модемами, так и коммуникационным ПО.

Существенной характеристикой любой коммуникационной системы является достоверность передаваемой информации. Достоверность передачи информации или уровень ошибок (error ratio) оценивают либо как вероятность безошибочной передачи блока данных, либо как отношение количества ошибочно переданных битов к общему числу переданных битов (единица измерения: количество ошибок на знак - ошибок/знак) Например, вероятность 0,999 соответствует 1 ошибке на 1000 бит (очень плохой канал). Требуемый уровень достоверности должны обеспечивать как аппаратура канала, так и состояние линии связи. Нецелесообразно использовать дорогостоящую аппаратуру, если линия связи не обеспечивает необходимых требований по помехоустойчивости.

При передаче данных в вычислительных сетях этот показатель должен лежать в пределах 10 -8 -10 -12 ошибок/знак, т.е. допускается не более одной ошибка на 100 миллионов переданных битов. Для сравнения, допустимое количество ошибок при телеграфной связи составляет примерно 3·10 -5 на знак.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы в часах. Вторая характеристика позволяет более эффективно оценить надежность системы.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов

Характеристика каналов связи затруднительна. Куда отнести возможность определённого чиновника получить информацию? Искусно манипулируя связями, делец покупает выгодно товар. Сарафанное (народное) радио быстро разносит дурные вести, часто сплетни. Ещё Высоцкий был обманут слухами о скором запрете… Используя свои каналы экстрасенсы исцеляют, доводят любопытную информацию массам. Иногда безбожно врут. Мозг сегодня управляет компьютерами, японцы учатся читать мысли, куда отнести новый канал?

Классификация

Сегодня вся информация распространяется посредством колебаний – единственный способ существования материи, воспринимаемый человеком, приборами. Тесла считал мироздание сотканным из вибраций. Сложно ошибиться, назвав каналы связи колебательными. Классификация тесно касается исследований гармонических процессов. Фурье показал – волна любой формы представима суммой элементарных колебаний.

По природе волн

Напрашивается первая классификация:

Мысли также могут быть периодичными. Установлением природы возникающих сигналов сегодня занимается наука. Приведённые выше примеры составляют малую толику достижений человеческой цивилизации. Проявив минимум умственного напряжения, читатели поймут: электромагнитные, механические волны распространяются повсеместно. Постепенно угасая. Электромагнитным обычно удаётся проникнуть дальше. Естественным ограничителем механических выступает окружающий планеты вакуум.

Электромагнитное излучение принято классифицировать согласно типу модуляции несущей:

  1. Амплитудная.
  2. Частотная.
  3. Фазовая.
  4. Однополосная.
  5. Кодово-импульсная.
  6. Манипуляция:
  • Частоты.
  • Фазы.
  • Амплитуды.

По форме волн

Человек изначально пытался использовать электричество. Задача передачи информации требовала менять форму сигналов:

  1. Аналоговые, изменяющиеся плавно.
  2. Импульсные, отличающиеся короткой длительностью.
  3. Дискретные искусственно разорваны. Цифровой сигнал отличается нормированием уровней символов 0, 1.

Требования минимизации стоимости, энергозатрат постоянно рождают методики улучшения качества. Сегодня высшим достижением человеческой мысли считают цифровой сигнал, ставший отдельной отраслью сегмента передачи информации. Сказанное позволяет классифицировать каналы:

  1. Шифрованный – открытый.
  2. Кодированный (например, псевдошумовым сигналом) – некодированный.
  3. Широкополосный – узкополосный.
  4. Дуплексный – односторонний.
  5. Мультиплексный – без сжатия.
  6. Скоростной – обычный.
  7. Восходящий – нисходящий.
  8. Широковещательный – индивидуальный.
  9. Прямой – обратный (возвратный).

Вдобавок сетевые протоколы образуют иерархию OSI, каждый уровень можно представить каналом. Возможны другие критерии разбиения.

По корректирующему действию

Каналы изменяют проходящую информацию. Иногда намеренно:

  1. Линейные. Исходный сигнал легко восстановить, зная характеристики канала.
  2. Нелинейные. Часть информации безвозвратно теряется.
  3. Стохастические. Помехи реальных каналов редко поддаются предсказанию, даже статистическими методами.

По среде распространения

Подраздел классификации касается электромагнитной энергии:

  1. Проводные.
  2. Беспроводные.

Принцип действия

Информационные данные проходят путь меж локациями, преодолевая среду. Траекторию принято называть каналом связи. Современная техника пользуется последним типом классификации, рассматривая методы:

  1. Проводные (витая пара, кабель, оптическое волокно, медный провод).
  2. Беспроводные (спутники, радио, тепловое излучение, свет).

Материалом проводных сред стала преимущественно медь ввиду наилучшего сочетания цена/сопротивление. Стекло, полимеры обещают стать достойной заменой: факт, отмеченный экспертами середины 80-х (ХХ века). В информатике рассматривают понятие канала намного шире, включая сюда устройства хранения, самописцы, накопители, плёнку.

Модуляция

Изначально форма сигналов была максимально простой, чаще дискретной (азбука Морзе, код Шиллинга, визуальные знаки семафоров). Исследователи быстро осознали неэффективность элементарных приёмов. Уже Попов догадался применять амплитудную модуляцию несущей. Частотная рождена Эдвином Армстронгом (30-е годы). Инженеры Дженерал Электрик убедительно показали отличную устойчивость приёма вещания в условиях вспышек молний.

Цифровая эра

Вторая мировая война принесла миру более изощрённые варианты, включая кодирование псевдошумовыми сигналами, частотную манипуляцию. Предпринятые меры позволили сильно снизить спектральную плотность сигнала. Засечь передачу стало невероятно сложно, расшифровать – практически невозможно. Достижения военных лет развивались следующие несколько десятилетий. Ныне господствуют цифровые технологии, завтрашние шаги капризной истории сложно предсказать.

Сети

Основные современные каналы касаются непосредственно сегмента сетей, то есть линий, объединяющих активно взаимодействующие электронные объекты: компьютеры, телефоны, модемы. Ранее создания ARPANET обменом информации заведовал человек. Бурный рост сетевых технологий сделал возможным создание глобальных конформаций: интернет, услуги сотовых операторов. Международное взаимодействие сделало возможным тотальная стандартизация протоколов. В частности, первоначально (RFC 733) интернет получил определение сети, пользующейся стеком TCP/IP. Сегодня понятие стало намного шире, подразумевая планетарную систему взаимосвязанных хостов, несущих программное обеспечение HTTP-серверов.

Персональные компьютеры

Отдельной строкой выступают шины персональных компьютеров. Эре зарождения многоядерных процессоров предшествовали такие сегодня малознакомые аббревиатуры, как PCI, ISA. Своему рождению Фидонет обязан карте расширения S-100. Неправильно – забывать исторические предпосылки. Пример – развал Фидонета, брошенного собственным разработчиком, обосновавшим ранее экономическую целесообразность применения телефонных линий. Ушёл создатель – развалилась система, лишённая опоры в виде уместности технологии, соответствия растущим требованиям, взвинченным конкурирующими методами интернета. Технический уровень юзеров являлся недостаточным, был бессилен продлить агонию умирающей концепции.

Отсутствие информационной поддержки

Западные телекоммуникационные средства образуют совокупность экономически обоснованных типов передачи информации. Не существует отечественных эквивалентов терминов, переданных англоязычным доменом паутины. По телекоммуникационным технологиям, параметрам приходится брать зарубежную справку. Отсутствие информационной поддержки назовём очередным слабым звеном, мешающим развитию индустрии.

Модели каналов

Физическую среду принято моделировать. Исследователи пытаются предсказать результат будущих действий, полагая минимизировать затраты, увеличить пользу. Часто толчком проведения работ становятся экстремальные ситуации, войны, революции. Первую работу, касающуюся реальных каналов передачи информации, снабжённых моделями шумов, помех выпустил (1948) Клод Шеннон. Учёный рассмотрел движения дискретных сигналов, предложил методики оптимизации.

Математики неустанно разрабатывают модели интерференции, рефракции, отражения, шумов, затухания, резонанса. Например, разработчики мобильной связи внедряют аддитивную помеху. Точные методики расчёта отсутствуют. Модель канала учитывает сферу применения, преследует различные цели. Бывают потребности, искомые величины следующие:

  1. Оценка полосы пропускания.
  2. Вычисление битрейта.
  3. Коэффициент использования канала.
  4. Спектральная плотность сигнала.
  5. Уровень дрожаний.
  6. Процент ошибочно переданных битов.
  7. Оценка отношения сигнал/шум.
  8. Задержка линии.

Сотовые вышки делят канал меж фиксированным набором абонентов. Зачастую сигнал подвергается сильной интерференции. Сложный канал представляют суммой взаимодействий типа «точка-точка». Принято выделять группы подходящих моделей, описывающих соединение, предназначать каждой области стандартный набор методик «для сдачи отчётности».

Цифровые

Дискретные каналы проще моделировать. Сообщение представляется цифровым сигналом выбранного слоя протокола (иерархии OSI). Часто физический канал заменяют упрощёнными представлениями:

  • Кадр.
  • Пакет.
  • Датаграмма.

Поведение более сложных структур проще отследить, подсчитывая производительность, скорость, вероятность ошибок. Примеры:

  • Симметричный цифровой канал – простейший пример передачи битов, учитывающий влияние шумов.
  • Ошибка пакета битов (модель Гильберта – Эллиота). Описывает случай обязательного наличия неправильно принятых первого, последнего символов при длине отрезка выборки выше некоторого значения m, именуемого защитной полосой. «Неудачные» участки обычно разделены сравнительно длинными (превышают m) областями уверенного приёма.
  • Стёртый бит. Модель введена Петером Элиасом (Массачусетский технологический институт, 1955), описывает случай системы, где периодически сигнал пропадает. Вводится определённая вероятность «стирания». Кажущаяся простота обманчива, широкий круг реальных проблем решается рядом допущений указанным путём.
  • Стёртый пакет. Временами пропадает кусок кода.
  • Произвольно меняющийся канал имитирует реальные непредсказуемые условия. Эксперты противопоставляют методику симметричной цифровой, предложенной Шенноном.

Аналоговые

Сами модели могут быть:

  1. Линейными – нелинейными.
  2. Непрерывными – дискретными.
  3. Постоянной – динамической вероятности.
  4. Узкополосные – широкополосные.
  5. Инвариантные – переменные во времени.
  6. Действительные (реальные) – комплексные.

  1. Шумовая модель:
    • Аддитивная (белый Гауссовский шум) – линейная непрерывная постоянная.
    • Фазовое дрожание.
  2. Интерференционная система: перекрёстные, межсимвольные помехи.
  3. Искажения – нелинейные каналы.
  4. Имитация амплитудно-частотной характеристики.
  5. Групповая (фазовая) задержка.
  6. Моделирование условий физического канала.
  7. Расчёт распространения радиоволн.
    • Затухание мощности, вызванное ростом дальности.
    • Замирания: Рэлеевские, Райсовские, частотно-избирательные, теневые.
    • Доплеровский сдвиг, дополненный замираниями.
    • Трассировка лучей.
    • Моделирование сотовой связи.

Сотовые

Касаются подвижных абонентов: постоянно меняются скорость, ускорение, координаты. Моделирование беспроводных децентрализованных самоорганизующихся систем требует учёта специфических условий: шаблона трафика, особенностей регламента связи, поведения подписчиков.

  • Широковещательный вариант часто называют типом «точка-многоточие». Единственный передатчик посылает несколько сообщений. Удалённость узлов неодинакова. Представима большая часть беспроводных каналов, исключая радиолюбительскую, двухстороннюю связь. Отлично вписывается нисходящая ветвь трафика сотовых сетей, в особенности при отсутствии помех соседней вышки.
  • Множественный доступ предусматривает параллельную отправку сообщений несколькими передатчиками. Число приёмников варьируется. Существующая схема доступа к ресурсам дополняется методами контроля среды, включая схемы мультиплексирования. Приемлемо описывает восходящую ветвь трафика мобильных сетей.
  • Релейный канал дополняет передатчик взаимосвязанной системой репитеров. Модель отлично описывает стандарт LTE.
  • Интерференционный канал предусматривает наличие взаимных помех двух базовых станций. Помимо перекрёстных образуются канальные. Концепция прямо намекает на сотовые ячейки мобильных операторов. Ситуация усугубляется отсутствием ортогональных методик кодирования.
  • Индивидуальная передача описывает поведение мобильного телефона, получившего выделенный ресурс вышки.
  • Широковещательная схема использовалась пейджерами. Система Хамелеон выступает неплохим примером.
  • Групповое вещание описывает случай передачи сообщения фиксированной группе абонентов. Тесно касается стандарта LTE.

Характеристики

Используют следующие характеристики канала

Помехозащищённость

Помехозащищённость . Где - минимальное отношение сигнал/шум ;

Объём канала

Объём канала определяется по формуле: ,

где - время, в течение которого канал занят передаваемым сигналом;

Для передачи сигнала по каналу без искажений объём канала должен быть больше либо равен объёму сигнала , т.е. . Простейший случай вписывания объёма сигнала в объём канала - это достижение выполнения неравенств , > и . Тем не менее, может выполняться и в других случаях, что даёт возможность добиться требуемых характеристик канала изменением других параметров. Например, с уменьшением диапазона частот можно увеличить полосу пропускания.

Классификация

Существует множество видов каналов связи, среди которых наиболее часто выделяют каналы проводной связи (воздушные, кабельные, световодные и др.) и каналы радиосвязи (тропосферные, спутниковые и др.). Такие каналы в свою очередь принято квалифицировать на основе характеристик входного и выходного сигналов, а также по изменению характеристик сигналов в зависимости от таких явлений, происходящих в канале, как замирания и затухание сигналов.

По типу среды распространения каналы связи делятся на проводные , акустические , оптические , инфракрасные и радиоканалы.

Каналы связи также классифицируют на

  • непрерывные (на входе и выходе канала - непрерывные сигналы),
  • дискретные или цифровые (на входе и выходе канала - дискретные сигналы),
  • непрерывно-дискретные (на входе канала - непрерывные сигналы, а на выходе - дискретные сигналы),
  • дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе - непрерывные сигналы).

Каналы могут быть как линейными и нелинейными, временными и пространственно-временными . Возможна классификация каналов связи по диапазону частот.

Модели канала связи

Канал связи описывается математической моделью , задание которой сводится к определению математических моделей выходного и входного и , а также установлению связи между ними, характеризующейся оператором , т.е.

.

Модели непрерывных каналов

Модели непрерывных каналов можно классифицировать на модель канала с аддитивным гауссовским шумом, модель канала с неопределенной фазой сигнала и аддитивным шумом и модель канала с межсимвольной интерференцией и аддитивным шумом.

Модель идеального канала

Модель идеального канала используется тогда, когда можно пренебречь наличием помех. При использовании этой модели выходной сигнал является детерминированным, т.е.

где γ – константа, определяющая коэффициент передачи, τ – постоянная задержка.

Модель канала с неопределённой фазой сигнала и аддитивным шумом

Модель канала с неопределённой фазой сигнала и аддитивным шумом отличается от модели идеального канала тем, что является случайной величиной . Например, если входной сигнал является узкополосным, то сигнал на выходе канала с неопределённой фазой сигнала и аддитивным шумом определяется следующим образом:

,

где учтено, что входной сигнал может быть представлен в виде:

,

где - преобразование Гильберта , - случайная фаза, распределение которой считается обычно равномерным на интервале .

Модель канала с межсимвольной интерференцией и аддитивным шумом

Модель канала с межсимвольной интерференцией и аддитивным шумом учитывает появление рассеяния сигнала во времени из-за нелинейности фазо-частотной характеристики канала и ограниченности его полосы пропускания, т.е. например, при передаче дискретных сообщений через канал на значение выходного сигнала будут влиять отклики канала не только на переданный символ, но и на более ранние или более поздние символы. В радиоканалах на возникновение межсимвольной интерференции влияет многолучёвое распространение радиоволн.

Модели дискретных каналов связи

Для задания модели дискретного канала необходимо определить множество входных и выходных кодовых символов, а также множество условных вероятностей выходных символов при заданных входных .

Модели дискретно-непрерывных каналов связи

Также существуют модели дискретно-непрерывных каналов связи

См. также

Примечания

Литература

  • Зюко А. Г., Кловский Д.Д., Коржик В. И., Назаров М.В., Теория электрической связи / Под ред. Д. Д. Кловского. - Учебник для ВУЗов. - М .: Радио и связь, 1999. - 432 с. -

Каналы связи являются основным звеном любой системы передачи информации. Классификацию каналов связи можно осуществить по различным признакам.

Классификация каналов связи

Признак классификации

Характеристики каналов связи

Физическая природа передаваемого сигнала

Механические, акустические, оптические и электрические. В свою очередь, оптические и электрические каналы связи могут быть проводными (электрические провода, кабели, световоды) и беспроводными, использующие электромагнитные волны, распространяющиеся в эфире (радио-каналы, инфракрасные каналы и т.д.)

Способ передачи информации

Симплексные передают информацию в одном направлении. Дуплексные передают информацию одновременно и в прямом, и обратном направлении. Полудуплексные осуществляют попеременную передачу информации либо в прямом, либо в обратном направлении.

Форма представления передаваемой информации

Аналоговые представляют информацию в непрерывной форме в виде непрерывного сигнала какой-либо физической природы. Цифровые представляют информацию в цифровой (прерывной – дискретной, импульсной) форме сигналов какой-либо физической природы

Время существования

Коммутируемые – временные, создаются только на время передачи информации. По окончании передачи информации и разъединении уничтожаются. Некоммутируемые – создаются на длительное время с определенными постоянными характеристиками. Их еще называют выделенными.

Скорость передачи информации

Низкоскоростные (50-200 бит/с) используются в телеграфных каналах связи. Среднескоростные (от 300-9600 бит/с) используются в телефонных (аналоговых) каналах связи. Новые стандарты могут использовать скорость от 14-56 кбит/с. Для передачи информации по низкоскоростным и среднескоростным каналам используются проводные линии связи (группы параллельных или скрученных проводов витая пара). Высокоскоростные (свыше 56 кбит/с) называют широкополосными.

Для передачи информации используются специальные кабели:

    экранированные (Shielded Twisted Pair – STP) и

    неэкранированные (Unshi-elded Twisted Pair – UTP) с витыми парами из медных проводов;

    коаксиальные (Coaxial Cable – СС),

    оптоволоконные (Fiber Optic Cable – FOC),

    радиоканалы.

Поскольку существует множество различных каналов связи, то передаваемую информацию необходимо представить в виде, соответствующем данному каналу. Такое преобразование обычно связано с модуляцией сигналов.

Модуляция – изменение какого-либо параметра сигнала в канале связи (модулируемого сигнала) в соответствии с текущими значениями передаваемых данных (т.е. моделирующего сигнала). Обратное преобразование модулированного сигнала в модулирующий называется демодуляция. Для этих целей существуют специальные устройства – модемы. Название «модем» состоит из двух составляющих: первый слог обозначает модулятор – устройство прямой) преобразования сигнала, второй слог – демодулятор – устройство обратного преобразования сигнала.

В современных модемах чаще всего используются следующие виды модуляции:

    частотная (FSK – Frequency Shift Keying); фазовая (PSK – Phase Shift Keying);

    квадратурная амплитудная (QAM – Quadrature Amplitude Modulation).

При передаче сигналов одним из важнейших параметров является помехоустойчивость. Первые два вида модуляции являются весьма помехоустойчивыми, так как при передаче искажается обычно лишь амплитуда сигнала. В последнем виде модуляции для защищенности от помех применяют более помехоустойчивый способ – квадратурную амплитудную модуляцию.

Любое преобразование и передача данных по каналам связи осуществляются в соответствии с принятыми протоколами передачи информации.

Протокол передачи данных – это совокупность правил, которые определяют формат данных и процедуры передачи их по каналу связи, в которых, как правило, указываются способ модуляции, соединение с каналом, представление данных и т.д. Все это делается для повышения достоверности передаваемых данных.

Все модемы имеют определенные стандарты передачи данных, которые устанавливаются Международным институтом телекоммуникаций (ITU – International Telecommunication Union). Обычно стандарт включает несколько протоколов передачи данных. Одним из наиболее эффективных стандартов является стандарт V.34. Он выполняет тестирование канала связи, определяя при этом наиболее эффективный режим работы модема.

В случае передачи большого потока информации, когда она представлена в виде файла, для ее передачи необходимо использовать специальные протоколы, которые осуществляют процедуры разбиения информации на блоки, автоматическое обнаружение и исправление ошибок, повторную пересылку неверно принятых блоков информации, восстановление передачи после обрыва и т.п. Самым распространенным и эффективным протоколом, который используется на российских телефонных линиях, является Zmodem (протокол передачи файлов).

По своей конструкции модемы бывают внутренние и внешние.

Внутренний модем – это специальная плата, встраиваемая в аппаратуру, например в системную плату компьютера, имеющая специальный разъем для подключения к телефонной линии связи.

Внешний модем (автономный) – это специальный прибор (небольшая коробка), имеющий блок питания, разъемы для подключения к аппаратуре (к компьютеру и телефонной линии связи), панель с индикаторами, которые показывают различные режимы работы модема, может быть регулятор, громкости звука.

Модемы могут осуществлять как контактный интерфейс с каналом связи, так и бесконтактный (аудио), могут предназначаться для различных каналов связи и систем, различаться скоростью передачи данных.

Кроме передачи данных модемы могут выполнять и ряд других полезных функций, как, например, автоматическое определение номера входящего звонка (АОН), функции автоответчика, электронный секретарь, прием и передача факсимильных сообщений и т.д.

Рынок услуг передачи данных в России постоянно развивается. В настоящий момент на российском рынке присутствуют следующие крупнейшие компании, расположенные в порядке убывания занимаемой доли рынка:

    Relcom – крупнейшая компания, использующая в основном каналы связи, арендованные у других компаний и различные протоколы связи, в том числе и протоколы сети Интернет;

    Rospak ориентирована на предприятия госсектора и правительственные учреждения по протоколам серии X (ХЗ, Х25, …, Х400);

    Infotel – совместное предприятие немецкой компании Deutsche Telecom и ряда российских фирм. Оно обслуживает государственные учреждения по государственным протоколам серии X, имеет доступ к другим российским сетям, банкам данных. Основное преимущество данной сети заключается в том, что она предоставляет услуги по доступу к Интернету (протоколы TCP/IP);

    Sprint образована в 1990 г. в виде совместного американо-российского предприятия (российский центральный телеграф и компания Sprint International). Услуги данной компании на российском рынке считаются самыми дорогими;

    Rosnet так же, как и компания Infotel, обслуживает в основном государственные учреждения по государственным протоколам серии X.

Протокол передачи данных – это совокупность правил, которые определяют формат данных и процедуры передачи их по каналу связи.