Основу реляционной модели данных составляют. Реляционная модель данных: теоретические основы. Структура данных в реляционной модели данных

Реляционная база данных - это набор нормализованных отношений, которые различаются по именам.

Реляционная база данных состоит из отношений, структура которых определяется с помощью особых методов, называемых нормализацией.

Эти отношения обладают следующими характеристиками:

отношение имеет имя, которое отличается от имен всех других отношений в реляционной схеме;

каждая ячейка отношения содержит только одно элементарное (неделимое) значение;

каждый атрибут имеет уникальное имя;

значения атрибута берутся из одного и того же домена;

каждый кортеж является уникальным, т.е. дубликатов кортежей быть не может;

порядок следования атрибутов не имеет значения;

теоретически порядок следования кортежей в отношении не имеет значения; (Но практически этот порядок может существенно повлиять на эффективность доступа к ним)

набор возможных значений для данной позиции отношения определяется множеством, или доменом, на котором определяется эта позиция. В таблице все значения в каждом столбце должны происходить от одного и того же домена, определенного для данного атрибута;

во множестве нет повторяющихся элементов. Аналогично, отношение не может содержать кортежей-дубликатов;

поскольку отношение является множеством, то порядок элементов не имеет значения. Следовательно, порядок кортежей в отношении несуществен.

Реляционная база данных может состоять из произвольного количества нормализованных отношений. Общепринятое обозначение реляционной схемы включает имя отношения, за которым (в скобках) располагаются имена атрибутов. При этом первичный ключ (обычно) подчеркивается.

Достоинствами реляционной модели данных являются простота, гибкость структуры, удобство реализации на компьютере, высокая стандартизация и использование математического аппарата реляционной алгебры и реляционного исчисления.

К недостаткам можно отнести атомарность, ограниченность и предопределенность набора возможных типов данных. Это затрудняет использование реляционных моделей для некоторых современных приложений. Названная проблема решается расширением реляционных моделей в объектно-реляционные.

В объектно-реляционной модели отдельные записи базы данных представляются в виде объектов. Между записями базы данных и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования. Объектно-ориентированные модели сочетают особенности сетевой и реляционной моделей и используются для создания крупных БД со сложными структурами данных.

В реляционной модели все данные представляются как факты о сущностях и связях, это и понимают под основными свойствами. Сущность - это, например, человек, место, вещь, событие, концепция, о которых хранится информация. Сущности именуются обычно существительными, такими как "покупатель", "компьютер", "служащий", "продажа".

Более точно, сущность - это множество индивидуальных объектов - экземпляров, причем все эти объекты являются различными.

Связь - это функциональная зависимость между сущностями. Например, "служащий" совершает "продажи".

Каждая сущность обладает атрибутами. Атрибут - это свойство объекта, характеризующее его экземпляр. Сущность "служащий" может иметь атрибуты "имя", "дата рождения" и т.д.

Общепринятым видом графического изображения реляционной модели данных является ER - диаграмма. На такой диаграмме сущности (таблицы) изображаются прямоугольниками, возможно, соединенными между собой линиями (связями). Такое графическое представление облегчает восприятие структуры базы данных по сравнению с текстовым описанием.

Различают целостность по сущностям и целостность по ссылкам. В целостности по сущностям не разрешается, чтобы какой-либо атрибут, участвующий в первичном ключе базового отношения принимал неопределенные значения.

Базовые отношения - это реально существующие модели отношения, которые соответствуют реальному объекту предметной области.

Пусть даны отношения R1 и R2. Пусть k1, - это первичный ключ отношения R1.

Если в отношении R2 присутствуют атрибуты k1, то для отношения R2, k1 - это внешний ключ. Если базовое отношение R2 содержит внешний ключ k1, то каждое значение k1 в R2 должно быть либо равным какому-либо значению R1, либо полностью неопределенным.

Достоинствами реляционного подхода являются:

1. Наличие простого, и в тоже время мощного математического аппарата

2. Возможность навигационного манипулирования данными без знания физических основ хранения данных.

Чтобы база данных была надежной, необходимо чтобы существовала нормализация. Существуют три нормальных формы.

Итак, условия первой нормальной формы:

Определить требуемые элементы данных, потому что они становятся столбцами в таблице. Поместить связанные элементы данных в таблицу.

Гарантировать отсутствие повторяющихся групп данных.

Гарантировать наличие первичного ключа.

Значение всех атрибутов атомарны.

Информационная система находится в первой нормальной форме.

Условия второй нормальной формы:

Отношение в первой нормальной форме.

Независимость первичных ключей и столбцов

Информационная система находится во второй нормальной форме.

Третья нормальная форма является заключительным шагом. Существуют нормальные формы с более высокими порядковыми номерами, но они гораздо сложнее и не обязательно ведут к созданию более эффективной базы данных. В базе данных требуется выбирать компромисс между минимизации избыточности данных и эффективностью.

Условия третьей нормальной формы:

Отношение во второй нормальной форме.

Все поля, не входящие в первичный ключ, зависят от первичного ключа.

Информационная система находится в третьей нормальной форме.

Таким образом, нормализация отношений успешно достигнута.

После нормализации отношений было создано 7 таблиц. Проиллюстрируем эти таблицы в режиме конструктора:

Рисунок 2.2 - Главная таблица в режиме конструктора


Рисунок 2.3 - Таблица "Инструкторы" в режиме конструктора

Рисунок 2.4 - Таблица "Клиенты" в режиме конструктора

Рисунок 2.5 - Таблица "Код операции" в режиме конструктора

Рисунок 2.6 - Таблица "Подъемник" в режиме конструктора

Рисунок 2.7 - Таблица "Прокат (прокат)" в режиме конструктора

Рисунок 2.8 - Таблица "Прокат (экипировка)" в режиме конструктора

Рисунок 2.9 - Таблица "Склон - Трансфер" в режиме конструктора

Рисунок 2.10 - Таблица "Склоны" в режиме конструктора

Рисунок 2.11 - Таблица "Услуга (трансфер)" в режиме конструктора









Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части .

В 1970 году Эдгар Кодд опубликовал статью (Codd, 1970), в которой описал основы реляционной модели хранения данных. Практической реализацией этой модели стали все современные реляционные базы данных. Формализация модели привела к созданию реляционного исчисления и реляционной алгебры.

Основной элемент реляционной модели – это кортеж. Кортеж – это упорядоченный набор элементов, каждый из которых принадлежит определенному множеству или, иначе говоря, имеет свой тип. Совокупность однородных по структуре кортежей образует отношение.

Несколько более наглядно все это выглядит в терминах, используемых в базах данных (рисунок ниже). Отношение – это таблица с данными. Кортеж - строка таблицы. Какого типа кортежи содержатся в отношении, или, что то же самое, каков формат строк в таблице, определяется заголовком отношения или таблицы. Каждый из столбцов таблицы образует домен. Значения, которое могут принимать элементы домена, называются атрибутами. Строки таблицы – это совокупность атрибутов, соответствующих доменам.


Пример отношения (Заборов)

Строки таблицы могут быть идентифицированы по своим атрибутам, то есть по тому, какие значения принимают элементы кортежа. Само содержание кортежа делает его непохожим на остальные. Но может так оказаться, что некоторые строки совпадут по своим атрибутам. Само по себе совпадение не страшно, но оно уже не позволяет использовать такой набор атрибутов, для однозначной идентификации кортежей в отношении. Чтобы идентификация была однозначной, вводят такое ключевое поле, которое для каждой строки принимает уникальное значение. Такой ключ может нести смысловую нагрузку, а может быть просто искусственно сгенерированным числом.

Совокупность всех отношений определяет базу данных. Каждое отношение хранит свою логическую часть информации. Чтобы получить определенные сведения может потребоваться сопоставление информации из разных отношений. Кодд описал восемь основных операций реляционной алгебры, позволяющих манипулировать с кортежами:

  • Объединение;
  • Пересечение;
  • Вычитание;
  • Декартово произведение;
  • Выборка;
  • Проекция;
  • Соединение;
  • Деление.
Замечательное свойство реляционной алгебры – это ее замкнутость, то есть операции над отношениями задаются таким образом, чтобы результат сам был отношением. То есть, имея несколько таблиц и производя соответствующие операции над ними, мы получим результатом тоже таблицу.

Смысл многих операций совпадает с соответствующими операциями из теории множеств. Общее представление об их сути дает рисунок ниже.


Пример операций над кортежами (Заборов)

Важно, что разные отношения могут содержать домены одного типа. Это значит, что если в двух кортежах встречаются одинаковые домены, внутри них одинаковые атрибуты, то можно говорить об определенной связи кортежей, содержащих эти атрибуты. Иначе говоря, если разные строки одной таблицы в одном из столбцов имеют одинаковые значения, то можно говорить об определенной связи этих строк. Или если в разных таблицах есть столбцы (домены) с одинаковым смыслом, то строки с одинаковыми значениями в этих столбцах оказываются связанными между собой.

Операция проекции позволяет получать отношения, состоящие из части элементов исходных отношений, ограничивая набор используемых доменов. Выборка или селекция позволяет получать отношения, содержащие только те кортежи, поля которых удовлетворяют условиям выборки. Например, можно выбрать только те кортежи, указанные домены которых имеют заданные значения атрибутов.

Совокупность всех операций над отношениями позволяет извлечь из базы данных любую интересующую информацию и сформировать ее в виде отношения (таблицы) с наперед заданными свойствами (заголовком).

Реляционной модель данных возникла не случайно, а явилась следствием необходимости оперировать с большими объемами разнообразных данных. Оказалось, что такая структура хранения данных и определенные в этой структуре операции удобны для решения широкого спектра прикладных задач. Можно предположить, что аналогичное удачное решение могла нащупать и природа в результате естественного отбора.

Описываемая нами система идентификаторов, понятий и событийной памяти во многом очень похожа на реляционную модель. Можно привести ряд аналогий:

  • Нейрон оперирует информацией с нескольких дендритных сегментов, каждый из которых настроен на данные определенного типа. Дендритные сегменты одного типа можно сопоставить с определенным доменом;
  • Сочетания понятий, которые описывают информацию, характерную для дендритного сегмента, соответствуют атрибутам, встречающимся в домене;
  • Понятия, используемые зоной коры, и идентификаторы, задающие структуру пакетов, характерную для этой зоны, определяют структуру доменов (заголовок);
  • Использование общих понятий при проекции информации между зонами соответствует использованию общих доменов в разных отношениях;
  • Совокупность зон коры, формирующих мозг, соответствует совокупности отношений, формирующих базу данных;
  • Ассоциативность, между воспоминаниями, соответствует связанности через общие атрибуты различных кортежей;
  • Распределенность воспоминания по зонам коры соответствует тому, как одно событие может породить несколько кортежей в разных отношениях, объединенных единым уникальным ключом;
  • Волна, описывающая текущее состояние мозга, может выступать аналогом запроса к базе данных. Так же, как результат операции над отношениями есть отношение, так и ответ мозга может быт совокупностью ассоциативно связанных описаний, совмещенных в одной волновой картине.
Конечно, между нашей моделью мозга и реляционными системами нет точного соответствия. Архитектура мозга значительно богаче, так как решает не только задачи хранения и извлечения данных, но и массу других совмещенных с этим функций. Однако даже имеющееся сходство позволяет лучше понять суть информационных процессов, происходящих в коре.

МОДЕЛИ ДАННЫХ

Хранимые в базе данные имеют определенную логическую структуру, описываются некоторой моделью представления данных (моделью данных), поддерживаемой СУБД. К числу классических относятся следующие модели данных:

· иерархическая;

· сетевая;

· реляционная.

Кроме того, в последние годы появились и стали более активно внедряться на практике следующие модели данных:

· постреляционная,

· многомерная,

· объектно-ориентированная.

Разрабатываются также всевозможные системы, основанные на других моделях данных, расширяющих известные модели. В их числе можно назвать объектно-реляционные, дедуктивно-объектно-ориентированные, семантические, концептуальные и ориентированные модели. Некоторые из этих моделей служат для интеграции баз данных, баз знаний и языков программирования. В некоторых СУБД поддерживается одновременно несколько моделей данных.

2.1. Иерархическая модель данных

В иерархической модели данные можно описать с помощью упорядоченного графа (или дерева). Упрощенно представление связей между данными в иерархической модели показано на рис. 2.1.


Рис. 2.1. Представление связей в иерархической модели

Для описания структуры (схемы) иерархической БД на некотором языке программирования используется тип данных «дерево».

Тип «дерево» схож с типом данных «запись» языка Паскаль. Допускается вложенность типов, каждый из которых находится на некотором уровне.

Тип «дерево» является составным. Он включает в себя подтипы («поддеревья»), каждый из которых, в свою очередь, является типом «дерево». Каждый из типов «дерево» состоит из одного «корневого» типа и упорядоченного набора (возможно пустого) подчиненных типов. Каждый из элементарных типов, включенных в тип «дерево», является простым или составным типом «запись». Простая «запись» состоит из одного типа, например, числового. Составная «запись» объединяет некоторую совокупность типов, например, целое, строку символов и указатель (ссылку). Пример типа «дерево» как совокупности типов показан на рис. 2.2.

Корневым называется тип, который имеет подчиненные типы и сам не является подтипом. Подчиненный тип (подтип) является потомком по отношению к типу, который выступает для него в роли предка (родителя). Потомки одного и того же типа являются близнецами по отношению друг к другу.

В целом тип «дерево» представляет собой иерархически организованный набор типов «запись».



Рис. 2.2. Пример типа «дерево»

Иерархическая база данных представляет собой упорядоченную совокупность экземпляров данных типа «дерево» (деревьев), содержащих экземпляры типа «запись» (записи). Часто отношения родства между типами переносят на отношения между самими записями. Поля записей хранят собственно числовые или символьные значения, составляющие основное содержание БД. Обход всех элементов иерархической БД обычно производится сверху вниз и слева направо.

В иерархической СУБД может использоваться терминология, отличающаяся от приведенной. Например, запись могут называть сегментом, а под записью БД понимать всю совокупность записей, относящихся к одному экземпляру типа "«дерево".

Данные в базе с приведенной схемой (рис.2.2.) могут выглядеть, например, как показано на рис.2.3.



Рис. 2.3. Данные в иерархической базе

Для организации физического размещения иерархических данных в памяти компьютера могут использоваться следующие группы методов:

· представление линейным списком с последовательным распределением памяти (адресная арифметика, левосписковые структуры);

· представление связными линейными списками (методы, использующие указатели и справочники).

К основным операциям манипулирования иерархически организованными данными относятся следующие:

· поиск указанного экземпляра БД (например дерева со значением 912 в поле Шифр_группы);

· переход от одного дерева к другому;

· переход от одной записи к другой внутри дерева (например, к следующей записи типа Студенты);

· вставка новой записи в указанную позицию;

· удаление текущей записи и т.д.

В соответствии с определением типа «дерево», можно заключить, что между предками и потомками автоматически поддерживается контроль целостности связей. Основное правило контроля целостности формулируется следующим образом: потомок не может существовать без родителя, а у некоторых родителей может не быть потомков. Механизмы поддержания целостности связей между записями различных деревьев отсутствуют.

К достоинствам иерархической модели данных относятся эффективное использование памяти компьютера и неплохие показатели времени выполнения основных операций над данными. Иерархическая модель данных удобна для работы с иерархически упорядоченной информацией.

Недостатком иерархической модели является ее громоздкость для обработки информации с достаточно сложными логическими связями, а также сложность понимания для обычного пользователя.

На иерархической модели данных основано сравнительно ограниченное количество СУБД, в числе которых можно назвать зарубежные системы IMS, PS/Focus, Team-Up, Data Edge, а также отечественные системы Ока, ИНЭС, МИРИС.

2.2. Сетевая модель

Сетевая модель данных позволяет отображать разнообразные взаимосвязи элементов данных в виде произвольного графа, обобщая тем самым иерархическую модель данных (рис. 2.4). Наиболее полно концепция сетевых БД впервые была изложена в Предложениях группы КОДАСИЛ (KODASYL).

Для описания схемы сетевой БД используется де группы типов: «запись» и «связь». Тип «связь» определяется для двух типов «запись»: предка и потомка. Переменные типа «связь» являются экземплярами связей.


Состоит из студентов

Возглавляется старостой

Рис. 2.5. Пример схемы сетевой БД

В различных СУБД сетевого типа для обозначения одинаковых по сути понятий могут использоваться различные термины. Например, такие, как элементы и агрегаты данных, записи, наборы, области и т.д.

Физическое размещение данных в базах сетевого типа может быть организовано практически теми же методами, что и в иерархических базах данных.

К числу важнейших операций манипулирования данными баз сетевого типа можно отнести следующие:

· поиск записи в БД,

· переход от предка к первому потомку,

· переход от потомка к предку,

· создание новой записи,

· удаление текущей записи,

· обновление текущей записи,

· включение записи в связь,

· исключение записи из связи,

· изменение связей и т.д.

Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат времени и оперативности. В сравнении с иерархической моделью сетевая модель предоставляет большие возможности в смысле допустимости образования произвольных связей.

Недостатком сетевой модели данных является высокая сложность и жесткость схемы БД, построенной на ее основе, а также сложность для понимания и выполнения операций обработки данных в БД для обычных пользователей. Кроме того, в сетевой модели данных ослаблен контроль целостности связей вследствие допустимости установления произвольных связей между записями.

Системы на основе сетевой модели не получили широкого распространения на практике. Наиболее известными сетевыми СУБД являются следующие: IDMS, db_VistaIII, СЕТЬ, СЕТОР и КОМПАС.

2.3. Реляционная модель

Реляционная модель данных была предложена сотрудником фирмы IBM Эдгаром Коддом и основывается на понятии отношение (relation).

Отношение представляет собой множество элементов, называемых кортежами. Подробно теоретическая основа реляционной модели рассматривается в следующем разделе. Наглядной формой представления отношения является привычная для человеческого восприятия двумерная таблица.

Таблица имеет строки (записи) и столбцы (колонки). Каждая строка таблицы имеет одинаковую структуру и состоит из полей. Строкам таблицы соответствуют кортежи, а столбцам – атрибуты отношения.

С помощью одной таблицы удобно описывать сведения о группах однородных (имеющих одинаковые свойства) объектов, явлений или процессов реального мира. Каждая строка таблицы содержит сведения о конкретном объекте, явлении или процессе. Строка (запись) имеет одинаковую структуру и описывает с помощью полей свойства объектов. Например, таблица может содержать сведения о группе обучаемых, о каждом из которых известны следующие характеристики: фамилия, имя и отчество, пол, дата рождения, адрес проживания. Поскольку в рамках одной таблицы не удается описать все данные из предметной области, то создается несколько таблиц, между которыми устанавливаются связи.

Физическое размещение данных в реляционных базах на внешних носителях легко осуществляется с помощью обычных файлов.

Преимущества реляционной модели данных заключаются в простоте, понятности и удобстве физической реализации на ЭВМ. Именно простота и понятность для пользователя явились основной причиной их широкого использования.

Основными недостатками реляционной модели являются следующие: отсутствие стандартных средств идентификации отдельных записей и сложность описания иерархических и сетевых связей.

Примерами реляционных СУБД являются следующие: dBaseIIIPlus dBaseIV (фирма Ashton-Tate), DB2 (IBM), R:BASE (Microrim), FoxPro ранних версий и FoxBase (Fox Software), Paradox и dBASE for Windows (Borland), FoxPro более поздних версий, Visual FoxPro и Access (Microsoft), Clarion (Clarion Software), Ingres (ASK Computer System) и Oracle (Oracle).

Последние версии реляционных СУБД имеют некоторые свойства объектно-ориентированных систем. Такие СУБД часто называют объектно-реляционными. Примером такой системы можно считать Oracle 8.x.

2.4. Постреляционная модель

Классическая реляционная модель предполагает неделимость данных, хранящихся в полях записей таблиц. Это означает, что информация в таблице представляется в первой нормальной форме. Существует ряд случаев, когда это ограничение мешает эффективной реализации приложений.

Постреляционная модель данных представляет собой расширенную реляционную модель, снимающую ограничение неделимости данных, хранящихся в записях таблиц. Постреляционная модель данных допускает многозначные поля – поля, значения которых состоят из подзначений. Набор значений многозначных полей считается самостоятельной таблицей, встроенной в основную таблицу.

На рис. 2.6 на примере информации о накладных и товарах для сравнения приведено представление одних и тех же данных с помощью реляционной (а) и постреляционной (б) моделей. Таблица Накладные содержит данные о номерах накладных и номерах покупателей. В таблице Накладные_Товары содержатся данные о каждой из накладных: номер накладной, название товара и количество товара. Таблица Накладные связана с таблицей Накладные_Товары по полю Номер накладной.

Как видно из рисунка, по сравнению с реляционной моделью в постреляционной модели данные хранятся более эффективно, а при обработке не требуется выполнять операцию соединения данных их двух таблиц.

Помимо обеспечения вложенности полей постреляционная модель поддерживает ассоциированные многозначные поля (множественные группы). Совокупность ассоциированных полей называется ассоциацией. При этом в строке первое значение одного столбца ассоциации соответствует первым значениям всех других столбцов ассоциации. Аналогичным образом связаны все вторые значения столбцов и т.д.

На длину полей и количество полей в записях таблицы не накладывается требование постоянства. Это означает, что структура данных и таблиц имеют большую гибкость.

Накладные

Накладные_Товары

Накладные

Рис. 2.6. Структуры данных реляционной и постреляционной моделей

Поскольку постреляционная модель допускает хранение в таблицах ненормализованных данных, возникает проблема обеспечения целостности и непротиворечивости данных. Эта проблема решается включением в СУБД механизмов, подобных хранимым процедурам в клиент-серверных системах.

Для описания функций контроля значений в полях имеется возможность создавать процедуры (коды конверсии и коды корреляции), автоматически вызываемые до и после обращения к данным. Коды корреляции выполняются сразу после чтения данных, перед их обработкой. Коды конверсии, наоборот, выполняются после обработки данных.

Преимуществом постреляционной модели является возможность представления совокупности связанных реляционных таблиц одной постреляционной таблицей. Это обеспечивает высокую наглядность представления информации и повышение эффективности ее обработки.

Недостатком постреляционной модели является сложность решения проблемы обеспечения целостности и непротиворечивости хранимых данных.

Рассмотренная постреляционная модель данных поддерживается СУБД uniVers, Bubba, Dasdb.

2.5. Многомерная модель

Многомерный подход к представлению данных в базе появился практически одновременно с реляционным, но реально работающих многомерных СУБД (МСУБД) до настоящего времени было очень мало. С середины 90-х годов интерес к ним стал приобретать массовый характер.

Толчком послужила в 1993 году программная статья одного из основоположников реляционного подхода Э. Кодда. В ней сформулированы 12 основных требований к системам класса OLAP (OnLine Analytical Processing – оперативная аналитическая обработка), важнейшие из которых связаны с возможностями концептуального представления и обработки многомерных данных. Многомерные системы позволяют оперативно обрабатывать информацию для проведения анализа и принятия решения.

В развитии концепции ИС можно выделить следующие два направления:

· системы оперативной (транзакционной) обработки;

· системы аналитической обработки (системы принятия решений).

Реляционные СУБД предназначались для информационных систем оперативной обработки информации и в этой области были весьма эффективны. В системах аналитической обработки они показали себя несколько неповоротливыми и недостаточно гибкими. Более эффективными здесь оказываются многомерные СУБД.

Многомерные СУБД являются узкоспециализированными СУБД, предназначенными для интерактивной аналитической обработки информации. Раскроем основные понятия, используемые в этих СУБД: агрегируемость, историчность, прогнозируемость данных.

Агрегируемость данных означает рассмотрение информации на различных уровнях ее обобщения. В информационных системах степень детальности представления информации для пользователя зависит от его уровня: аналитик, пользователь-оператор, управляющий, руководитель.

Историчность данных предполагает обеспечение высокого уровня статичности(неизменности) собственно данных и их взаимосвязей, а также обязательность привязки данных ко времени.

Статичность данных позволяет использовать при их обработке специализированные методы загрузки, хранения, индексации и выборки.

Временная привязка данных необходима для частого выполнения запросов, имеющих значения времени и даты в составе выборки. Необходимость упорядочения данных по времени в процессе обработки и представления данных пользователю накладывает требования на механизмы хранения и доступа к информации. Так для уменьшения времени обработки запросов желательно, чтобы данные всегда были отсортированы в том порядке, в котором они наиболее часто запрашиваются.

Прогнозируемость данных подразумевает задание функций прогнозирования и применение их к различным временным интервалам.

Многомерность модели данных означает не многомерность визуализации цифровых данных, а многомерное логическое представление структуры информации при описании и в операциях манипулирования данными.

По сравнению с реляционной моделью многомерная организация данных обладает более высокой наглядностью и информативностью.

Если речь идет о многомерной модели с мерностью больше двух, то не обязательно визуально информация представляется в виде многомерных объектов (трех-, четырех- и более мерных гиперкубов). Пользователю и в этих случаях более удобно иметь дело с двумерными таблицами или графиками. Данные при этом представляют собой «вырезки» (точнее «срезы») из многомерного хранилища данных, выполненные с разной степенью детализации.

Рассмотрим основные понятия многомерных моделей данных, к числу которых относятся измерение и ячейка.

Измерение (Dimensiom) – это множество однотипных данных, образующих одну из граней гиперкуба. Примерами наиболее часто используемых временных измерений являются Дни, Месяцы, Кварталы и годы. В качестве географических измерений широко употребляются Города, Районы, Регионы и Страны. В многомерной модели данных измерения играют роль индексов, служащих для идентификации конкретных значений в ячейках гиперкуба.

Ячейка (Cell) или показатель- это поле, значение которого однозначно определяется фиксированным набором измерений. Тип поля чаще всего определен как цифровой. В зависимости от того, как формируются значения некоторой ячейки, обычно она может быть переменной (значения изменяются и могут быть загружены из внешнего источника данных или сформированы программно) либо формулой (значения, подобно формульным ячейкам электронной таблицы, вычисляются по заранее заданным формулам).

В примере на рис. 2.8 каждое значение ячейки Объем продаж однозначно определяется комбинацией временного измерения (Месяц продаж) и модели автомобиля. Пример трехмерной модели данных приведен на рис. 2.9.

1999

Петров 9999999вароыоро

Объем продаж

«Жигули» «Москвич»

Измерения:

Время (год) – 1994, 1995, 1996

Менеджер – Петров, Смирнов, Яковлев

Модель – «Волга», «Жигули», «Москвич»

Показатель: Объем продаж

Рис. 2.9. Пример трехмерной модели

В существующих МСУБД используются два основных варианта (схемы) организации данных: гиперкубическая и поликубическая.

В полукубической схеме предполагается, что в СУБД может быть определено несколько гиперкубов с различной размерностью и с различными измерениями в качестве граней. Примером системы, поддерживающей поликубический вариант БД, является сервер Oracle Express Server.

В случае гиперкубической схемы предполагается, что все показатели определяются одним и тем же набором измерений. Это означает, что при наличии нескольких гиперкубов БД все они имеют одинаковую размерность и совпадающие измерения. Очевидно, в некоторых случаях информация в БД может быть избыточной (если требовать обязательное заполнение ячеек).

В случае многомерной модели данных применяется ряд специальных операций, к которым относятся: формирование «среза», «вращение», агрегация и детализация.

«Срез» (Slice) представляет собой подмножество гиперкуба, полученное в результате одного или нескольких измерений. Формирование «срезов» выполняется для ограничения используемых пользователем значений, так как все значения гиперкуба практически никогда одновременно не используются. Например, если ограничить значения измерения Модель автомобиля в гиперкубе (рис.2.9) маркой «Жигули», то получится двухмерная таблица продаж этой марки автомобиля различными менеджерами по годам.

Операция «вращение» (Rotate) применяется при двумерном представлении данных. Суть ее заключается в изменении порядка измерений при визуальном представлении данных. Так, «вращение» двумерной таблицы, показанной на рис.2.8б, приведет к изменению ее вида таким образом, что по оси Х будет марка автомобиля, а по оси Y – время.

Операцию «вращения» можно обощить и на многомерный случай, если под ней понимать процедуру изменения порядка следования измерений. В простейшем случае, это может быть взаимная перестановка двух произвольных измерений.

Операции «агрегация» (Drill Up) и “детализация” (Drill Down) означают соответственно переход к более общему или к более детальному представлению информации пользователю из гиперкуба.

Для иллюстрации смысла операции «агрегация» предположим, что у нас имеется гиперкуб, в котором помимо измерений гиперкуба, приведенного на рис. 2.9, имеются еще измерения: Подразделение, Регион, Фирма, Страна. Заметим, что в этом случае в гиперкубе существует иерархия (снизу вверх) отношений между измерениями: Менеджер, Подразделение, Регион, Фирма, Страна.

Пусть в описанном гиперкубе определено, насколько успешно в 2000 году менеджер Петров продавал автомобили «Жигули» и «Волга». Тогда, поднимаясь на уровень выше по иерархии, с помощью операции «агрегация» можно выяснить, как выглядит соотношение продаж этих же моделей на уровне подразделения, где работает Петров.

Основным достоинством многомерной модели данных является удобство и эффективность аналитической обработки больших объемов данных, связанных со временем. При организации обработки аналогичных данных на основе реляционной модели происходит нелинейный рост трудоемкости операций в зависимости от размерности БД и существенное увеличение затрат оперативной памяти на индексацию.

Недостатком многомерной модели данных является ее громоздкость при решении простейших задач оперативной обработки информации.

Примерами систем, поддерживающими многомерные модели данных, являются Essbase (Arbor Software), Media Multi-matrix (Speedware), Oracle Express Server (Oracle), Cache (InterSystem). Некоторые программные продукты, например Media/MR (Speedware), позволяют одновременно работать с многомерными и с реляционными БД. В СУБД Oracle, в которой внутренней моделью данных является многомерная модель, реализованы три способа доступа к данным: прямой (на уровне узлов многомерных матриц), объектный и реляционный.

2.6. Объектно-ориентированная модель

В объектно-ориентированной модели при представлении данных имеется возможность идентифицировать отдельные записи базы. Между записями базы данных и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования.

Стандартизованная объектно-ориентированная модель описана в рекомендациях стандарта ODMG-93 (Object Database Management Group – группа управления объектно-ориентированными базами данных). Реализовать в полном объеме рекомендации ODMG-93 пока не удается. Для иллюстрации ключевых идей рассмотрим несколько упрощенную модель объектно-ориентированной БД.

Структура объектно-ориентированной БД графически представима в виде дерева, узлами которого являются объекты. Свойства объектов описываются некоторым стандартным типом (например, строковым – string) или типом, конструируемым пользователем (определяется как class).

Значением свойства типа string является строка символов. Значение свойства типа class есть объект, являющийся экземпляром соответствующего класса. Каждый объект-экземпляр класса считается потомком объекта, в котором он определен как свойство. Объект-экземпляр класса принадлежит своему классу и имеет одного родителя. Родовые отношения в БД образуют иерархию объектов.

Пример логической структуры объектно-ориентированной БД библиотечного дела приведен на рис. 2.10.

Здесь объект типа БИБЛИОТЕКА является родительским для объектов-экземпляров классов АБОНЕНТ, КАТАЛОГ и ВЫДАЧА. Различные объекты типа КНИГА могут иметь одного или разных родителей. Объекты типа КНИГА, имеющие одного и того же родителя, должны различаться по крайней мере инвентарным номером (уникален для каждого экземпляра книги), но имеют одинаковые значения свойств шифр книги, УДК, название и автор.

Логическая структура объектно-ориентированной БД внешне похожа на структуру иерархической БД. Основное отличие между ними состоит в методах манипулирования данными.

Для выполнения действий над данными в рассматриваемой модели БД применяются логические операции, усиленные объектно-ориентированными механизмами инкапсуляции, наследования и полиморфизма. Ограниченно могут применяться операции, подобные командам SQL (например, для создания БД).

Создание и модификация базы данных сопровождается автоматическим формированием и последующей корректировкой индексов (индексных таблиц), содержащих информацию для быстрого поика данных.Рассмотрим кратко понятия инкапсуляция, наследования и полиморфизма применительно к объектно-ориентированной модели БД.

Инкапсуляция ограничивает область видимости имени свойства пределами того объекта, в котором оно определено. Так, если в объект типа КАТАЛОГ добавить свойство, задающее телефон автора книги и имеющее название телефон, то мы получим одноименные свойства у объектов АБОНЕНТ и КАТАЛОГ. Смысл такого свойства будет определяться тем объектом, в котором оно инкапсулировано.

Наследование , наоборот, распространяет область видимости свойства на всех потомков объекта. Так, всем объектам типа КНИГА, являющимся потомками объекта типа КАТАЛОГ, можно приписать свойства объекта-родителя: шифр книги, УДК, название, автор. Если необходимо расширить действие механизма наследования на объекты, не являющиеся непосредственно родственниками (например, между двумя потомками одного родителя), то в их общем предке определяется абстрактное свойство типа abs. Так, определение абстрактных свойств билет и номер в объекте БИБЛИОТЕКА приводит к наследованию этих свойств всеми дочерними объектами АБОНЕНТ, КНИГА и ВЫДАЧА. Не случайно поэтому значения свойства билет классов АБОНЕНТ и ВЫДАЧА, показанных на рисунке, будут одинаковыми – 00015.

Полиморфизм в объектно-ориентированных языках программирования означает способность одного и того же программного кода работать с разнотипными данными. Другими словами, он означает допустимость в объектах разных типов иметь методы (процедуры или функции) с одинаковыми именами. Во время выполнения объектной программы одни и те же методы оперируют с разными объектами в зависимости от типа аргумента. Применительно к нашей объектно-ориентированной базе данных полиморфизм означает, что объекты класса КНИГА, имеющие разных родителей из класса КАТАЛОГ, могут иметь разный набор свойств. Следовательно, программы работы с объектами класса КНИГА могут содержать полиморфный код.Поиск в объектно-ориентированной БД состоит в выяснении сходства между объектом, задаваемым пользователем, и объектами, хранящимися в БД. Определяемый пользователем объект, называемый объектом-целью (свойство объекта имеет тип goal), в общем случае может представлять собой подмножество всей хранимой в БД иерархии объектов. Объект-цель, а также результат выполнения запроса могут храниться в самой базе. Пример запроса о читателях, получивших в библиотеке хотя бы одну книгу, показан на рис. 2.11.



Рис. 2.11. Фрагмент БД с объектом-целью

Основным достоинством объектно-ориентированной модели данных в сравнении с реляционной является возможность отображения информации о сложных взаимосвязях объектов. Объектно-ориентированная модель данных позволяет идентифицировать отдельную запись базы данных и определять функции их обработки.

Недостатками объектно-ориентированной модели являются высокая понятийная сложность, неудобство обработки данных и низкая скорость выполнения запросов.

В 90-е годы существовали экспериментальные прототипы объектно-ориентированных систем управления базами данных. В настоящее время такие системы получили широкое распространение, в частности, к ним относятся следующие СУБД: POET (POET Software), Jasmine (Computer Associates), Versant (Versant Technologies), Q2 (Ardent Software), ODB-Jupiter (научно-производственный центр “Интелтек Плюс”), а также Iris, Orion, Postgres.


РЕЛЯЦИОННАЯ МОДЕЛЬ ДАННЫХ

3.1. Основные определения

Реляционная модель данных была предложена Е. Коддом в 1970 году. В основе реляционной модели данных лежит понятие отношения.

Математически отношение определяется следующим образом. Пусть даны n множеств D1,D2,…,Dn. Тогда R есть отношение над этими множествами, если R есть множество упорядоченных кортежей длины n вида (d1,d2,…,dn), где d1 – элемент из D1, d2 – элемент из D2, dn – элемент из Dn. D1,D2,…,Dn называют доменами отношения R. Заметим, что данное определение эквивалентно определению декартова произведения множеств D1,D2,…,Dn.

Дадим определение отношения с точки зрения теории обработки данных. Отношение – подмножество декартова произведения одного или более доменов. Домен – множество возможных значений конкретного атрибута. Атрибут – свойство объекта, явления или процесса. Примеры атрибутов: фамилия, имя, отчество, дата рождения. Кортеж - элемент отношения, это отображение имен атрибутов в значения, взятые из соответствующих доменов. Конечное множество кортежей образует отношение. Если отношение создается из n доменов, то каждый кортеж имеет n компонент.

Поясним данные определения на примерах.

Пример 1. Пусть имеется два домена:

D1 = (0,1); D2 = (a,b,c).

Построим декартово произведение доменов D1,D2:

D1 x D2 = {(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)}.

В качестве отношения, построенного на доменах D1, D2, можно выбрать, например, следующее:

R = {(0,a),(0,c),(1,b),(1,c)}.

Отношение R состоит из четырех кортежей, в каждом кортеже по два элемента, первый выбирают из домена D1, второй – из домена D2.

Пример 2. Пусть имеется четыре домена:

D1 – множество целых чисел, например, множество номеров деталей (101, 34, 23, 109, 147).

D2 – множество символьных строк, например, множество названий деталей (втулка, кронштейн, скоба, муфта, болт).

D3 – множество символьных строк, например, множество названий видов обработки (холодная штамповка, металлическое литье, литье из пластмасс, механическая обработка).

D4 – множество вещественных чисел, например, множество весов деталей (45.8, 6.9, 123, 69.3, 5.2, 2.34).

В качестве отношения, построенного на доменах D1, D2, D3, D4, можно выбрать, например, следующее:

R = { (34, втулка, литье из пластмасс, 69.3), (23, кронштейн, холодная штамповка, 45.8), (101, болт, механическая обработка, 5.2)}.

Отношение R состоит из трех кортежей, в каждом кортеже по четыре элемента.

Удобно представить отношение как таблицу, где каждая строка есть кортеж, содержащий данные о конкретном объекте, явлении или процессе. Каждый столбец таблицы – это домен, содержащий возможные значения одного из свойств объекта, процесса или явления.

Например:Детали

Следующие наборы терминов эквивалентны:

отношение, таблица, файл;

кортеж, строка, запись:

атрибут, элемент столбца, поле.

Поименованный список имен атрибутов отношения называют схемой отношения . Пример схемы:

Детали (Номер детали , Название детали, Вид обработки, Вес).

Ключевой атрибут в схеме отношения подчеркивают.

Совокупность схем отношений, используемых для представления информации, называется схемой реляционной базы данных .

Число столбцов в отношении называют степенью . Текущее число кортежей в отношении называют мощностью . Степень отношения обычно не изменяется после создания отношения, но мощность будет колебаться по мере добавления новых и удаления старых кортежей.

Реляционная база данных – это совокупность отношений, содержащих всю информацию, которая должна храниться в базе данных.

Пример фрагмента базы данных:

Отношение 1. Радиоэлементы (транзисторы)

Отношение 2. Склад

Каждое отношение имеет ключ. Ключ (первичный ключ, ключ отношения, ключевой атрибут) – это атрибут или группа атрибутов, которые позволяют однозначно идентифицировать кортеж в отношении. Если ключ составной (состоит из двух и более атрибутов), то он должен быть минимальным . Это значит, что если один произвольный атрибут исключить из составного ключа, оставшихся атрибутов будет недостаточно для однозначной идентификации отдельных кортежей. Значения ключа в отношении (таблице) должно быть уникальными, то есть не должны существовать два или более кортежа (записи) с одинаковым значением ключа. Если в отношении нет полей, значения в которых уникальны, для создания ключа вводят обычно дополнительное числовое поле, содержащее порядковые номера записей.

В отношении "Радиоэлементы (транзисторы)" ключом является Тип прибора, в отношении "Склад" - Номер стеллажа, Тип прибора.

Возможны случаи, когда отношение имеет несколько комбинаций атрибутов, каждая из которых однозначно определяет все кортежи отношения. Все эти комбинации атрибутов являются возможными ключами отношения. Любой из возможных ключей может быть выбран как первичный.

Ключи обычно используют для достижения следующих целей:

исключения дублирования значений в ключевых атрибутах;

упорядочения кортежей;

ускорения работы с кортежами отношения;

организации связывания таблиц.

Пусть в отношении R1 имеется не ключевой атрибут А, значения которого являются значениями ключевого атрибута В другого отношения R2. Тогда говорят, что атрибут А отношения R1 (атрибут В отношения R2) есть внешний ключ . С помощью внешних ключей устанавливаются связи между отношениями.

Классы отношений . Отношения реляционной базы данных в зависимости от содержания подразделяются на два класса: объектные отношения и связные отношения.

Объектные отношения хранят данные о группах однородных объектов, явлений или процессов, имеющих однотипные характеристики. В объектном отношении ключ называют первичным, или, просто, ключом отношения.

Связное отношение хранит данные о связях между объектными отношениями. Связное отношение содержит ключи связанных объектных отношений и данные, количественно или качественно характеризующие связь. Ключи связных отношений называют внешними ключами, поскольку они являются первичными ключами других отношений. Реляционная модель накладывает на внешние ключи ограничение, называемое ссылочной целостностью. Это означает, что каждому значению внешнего ключа должен соответствовать кортеж объектного отношения. Без этого возможна ситуация, когда внешний ключ ссылается на объект, о котором ничего не известно.

Рассмотрим пример объектных и связных отношений.

Объектное отношение "Детали"

Объектное отношение "Материалы"

Связное отношение "Технологический процесс"

В отношении "Детали" первичный ключ – номер детали. В отношении "Материал" первичный ключ – код материала. В отношении "Технологический процесс" внешний ключ – номер детали, код материала. Атрибут "Норма расхода материала на деталь" – количественная характеристика связи между деталью и материалом.

Поскольку не всякой таблице можно поставить в соответствие отношение, приведем условия, выполнение которых позволяет считать таблицу отношением.

1. Все строки таблицы должны быть уникальны, т.е. не может быть строк с одинаковыми первичными ключами.

2. Имена столбцов таблицы должны быть различны, а значения их простыми, т.е. недопустима группа значений в одном столбце одной строки.

3. Все строки одной таблицы должны иметь одинаковую структуру, с соответствующими именами и типами столбцов.

4. Порядок размещения строк в таблице может быть произвольным.

Индексирование . Определение ключа для таблицы означает автоматическую сортировку записей, контроль отсутствия повторений значений в ключевых полях записей и повышение скорости выполнения операций поиска в таблице. Для реализации этих функций в СУБД применяют индексирование. Индекс – это средство ускорения операции поиска записей в таблице, а следовательно, и других операций, использующих поиск: извлечение, модификация, сортировка и т.д. Таблицу, для которой используется индекс, называют индексированной. Ключевые поля таблицы во многих СУБД как правило индексируются автоматически. Индексы, созданные для ключей называют первичными индексами .

Индексы, создаваемые пользователем для не ключевых полей, иногда называют вторичными (пользовательскими) индексами . Введение таких индексов не изменяет физического расположения записей таблицы, но влияет на последовательность просмотра записей.

Главная причина повышения скорости выполнения различных операций в индексированных таблицах состоит в том, что основная часть работы производится с небольшими индексными файлами, а не с самими таблицами. Наибольший эффект повышения производительности работы с индексированными таблицами достигается для значительных по объему таблиц. Индексирование требует небольшого дополнительного места на диске и незначительных затрат процессора на изменение индексов в процессе работы.

Связи между отношениями (таблицами). Обычно база данных представляет собой набор связанных таблиц.Связывание таблиц дает следующие преимущества:

многие СУБД при связывании таблиц автоматически выполняют контроль целостности вводимых в базу данных в соответствии с установленными связями, что повышает достоверность хранимой в БД информации;

облегчается доступ к данным. Связывание таблиц при выполнении таких операций как поиск, просмотр, редактирование, выборка и подготовка отчетов с использованием информации из разных таблиц уменьшает количество явных обращений к таблицам данных и число манипуляций в каждой из них.

Существует несколько разновидностей связей между отношениями. Связанные отношения часто взаимодействуют по принципу главная и подчиненная таблицы. Главную таблицу можно еще называть родительской, а подчиненную – дочерней. Одна и та же таблица может быть главной по отношению к одной таблице базы данных и дочерней по отношению к другой.

Связь «один-ко-многим» означает, что одной записи в родительской таблице может соответствовать несколько записей (в том числе и одна) в дочерней таблице. В родительской таблице могут быть записи, для которых в данный момент нет соответствующих записей в дочерней таблице. Различают также жесткую связь «один-ко-многим», когда каждой записи в родительской таблице должны соответствовать записи в дочерней таблице.

Связь «один-ко-многим» является самой распространенной для реляционных баз данных. Пример связи: таблицы «Студенты» и «Экзамены» могут быть связаны связью «один-ко-многим» по полю «Номер Зачетки». Данная связь будет означать, что одна запись о студенте из таблицы «Студенты» может быть связана с несколькими записями о сдаче экзаменов данным студентом в таблице «Экзамены».

Связь «один-к-одному» имеет место, когда одной записи в родительской таблице соответствует только одна запись в дочерней таблице. Данная связь встречается редко и означает, что информация из двух таблиц могла бы быть объединена в одну. Наличие двух таблиц говорит о желании разделить основную и второстепенную информацию на два отношения. Например, информация о студентах может быть разделена на две таблицы «Студенты» и «Дополнительные сведения», которые будут связаны связью «один-к-одному» по полю «Номер зачетки». Связь «один-к-одному» приводит к тому, что для чтения связанной информации в нескольких таблицах приходится производить несколько операций чтения, что замедляет получение нужной информации. Связь «один-к-одному» может быть жесткой и нежесткой.

Третий вид связи – связь «многие-ко-многим» . Данный вид связи означает, что несколько записей одной таблицы связаны с несколькими записями другой таблицы и наоборот. Например: между таблицами «Учебные группы и дисциплины» и «Преподаватели» может существовать связь «многие-ко-многим». Это означает, что каждый преподаватель может вести несколько предметов и, в то же время, один и тот же предмет могут вести несколько преподавателей.

Некоторые СУБД не поддерживают связи «многие-ко-многим» на уровне ссылочной целостности, хотя и позволяют реализовывать ее в таблицах неявным образом. Считается, что базу данных всегда можно перестроить так, чтобы любая связь «многие-ко-многим» была заменена на одну или более связей «один-ко-многим».

Обеспечение целостности данных . Одним из основополагающих понятий в технологии баз данных является понятие целостности. В общем случае это понятие прежде всего связано с тем, что база данных отражает в информационном виде некоторый объект реального мира или совокупность взаимосвязанных объектов реального мира. В реляционной модели объекты реального мира представлены в виде совокупности взаимосвязанных отношений. Под целостностью будем понимать соответствие информационной модели предметной области, хранимой в базе данных, объектам реального мира и их взаимосвязям в каждый момент времени. Любое изменение в предметной области, значимое для построенной модели, должно отражаться в базе данных, и при этом должна сохраняться однозначная интерпретация информационной модели в терминах предметной области.

Поддержка целостности в реляционной модели данных в ее классическом понимании включает в себя 3 аспекта.

Во-первых, это поддержка структурной целостности , которая трактуется как то, что реляционная СУБД должна допускать работу только с однородными структурами данных типа «реляционное отношение». При этом понятие «реляционное отношение» должно удовлетворять всем ограничениям, накладываемым на него в классической теории реляционной БД (отсутствие дубликатов кортежей, обязательное наличие первичного ключа, отсутствие понятия упорядоченности кортежей).

В дополнение к структурной целостности необходимо рассмотреть проблему неопределенных Null значений. Неопределенное значение интерпретируется в реляционной модели как значение, неизвестное на данный момент времени. Это значение при появлении дополнительной информации в любой момент времени может быть заменено на конкретное значение. При сравнении неопределенных значений не действуют стандартные правила сравнения: одно неопределенное значение никогда не считается равным другому неопределенному значению. Для выявления равенства значения некоторого атрибута неопределенному значению применяются специальные стандартные предикаты:

<имя атрибута> IS NULL и <имя атрибута> IS NOT NULL.

Если в данном кортеже (в данной строке) указанный атрибут имеет неопределенное значение, то предикат IS NULL принимает значение TRUE (Истина), а предикат IS NOT NULL – FALSE (Ложь), в противном случае предикат IS NULL принимает значение FALSE, а предикат IS NOT NULL принимает значение TRUE.

Введение Null значений вызвало необходимость модификации классической двузначной логики и превращения ее в трехзначную.

Во-вторых, это поддержка языковой целостности , которая состоит в том, что реляционная СУБД должна обеспечивать языки описания и манипулирования данными не ниже стандарта SQL. Не должны быть доступны иные низкоуровневые средства манипулирования данными, не соответствующие стандарту.

В-третьих, это поддержка ссылочной целостности (Declarative Referential Integrity, DRI).

Ссылочная целостность – это совокупность связей между отдельными таблицами во всей базе данных. Нарушение хотя бы одной такой связи делает информацию в базе данных недостоверной. СУБД обычно блокирует действия, которые нарушают целостность связей между таблицами, т.е. нарушают ссылочную целостность. Обеспечение ссылочной целостности означает, что СУБД при корректировке базы данных обеспечивает для связанных таблиц контроль за соблюдением следующих правил:

в подчиненную таблицу не может быть добавлена запись с несуществующим в главной таблице значением ключа связи;

в главной таблице нельзя удалить запись, если не удалены связанные с ней записи в подчиненной таблице;

изменение значений ключа связи в записи главной таблицы невозможны, если в подчиненной таблице имеются связанные с ней записи.

При попытке пользователя нарушить эти условия в операциях добавления и удаления записей или обновления ключевых данных в связанных таблицах СУБД должна выводить сообщения об ошибке и не допускать выполнения этих операций.

Чтобы предотвратить потерю ссылочной целостности, используется механизм каскадных изменений. Он состоит в обеспечении следующих действий:

при изменении поля связи в записи родительской таблицы следует синхронно изменить значения полей связи в соответствующих записях дочерней таблицы;

при удалении записи в родительской таблице следует удалить соответствующие записи в дочерней таблице.

Структурная, языковая и ссылочная целостности не определяют семантику БД, не касаются содержания базы данных, поэтому вводится понятие семантической поддержки целостности .

Семантическая поддержка может быть обеспечена двумя путями: декларативным и процедурным путем . Декларативный путь связан с наличием механизмов в рамках СУБД, обеспечивающих проверку и выполнение ряда декларативно заданных правил-ограничений, называемых чаще всего «бизнес-правилами» (Business Rules) или декларативными ограничениями целостности.

Выделяются следующие виды декларативных ограничений целостности:

· Ограничения целостности атрибута : значение по умолчанию, задание обязательности или необязательности значений (Null), задание условий на значения атрибутов.

Задание значения по умолчанию означает, что каждый раз при вводе новой строки в отношение, при отсутствии данных в указанном столбце этому атрибуту присваивается именно значение по умолчанию. Например, при вводе новых записей в поле год издания необходимо ввести значение текущего года. Для MS Access это выражение будет иметь вид:

Здесь NOW() – функция, возвращающая значение текущей даты, YEAR(data) – функция, возвращающая значение года для даты, указанной в качестве параметра.

Другой пример, в качестве условия на значение для года издания надо задать выражение, которое будет проверять попадание года издания в интервал от 1960 года до текущего года. Для MS Access это выражение будет выглядеть следующим образом:

Between 1960 AND YEAR(NOW())

В СУБД MS SQL Server значение по умолчанию записывается в качестве «бизнес-правила». В этом случае будет использоваться выражение, в котором явным образом должно быть указано имя соответствующего столбца, например:

YEAR_PUBL>=1960 AND YEAR_PUB<= YEAR(GETDATE())

Здесь GETDATE() – функция MS SQL Server, возвращающая значение текущей даты, YEAR_PUB – имя столбца, соответствующего году издания.

· Ограничения целостности, задаваемые на уровне доменов . Эти ограничения удобны, если в базе данных присутствуют несколько столбцов разных отношений, которые принимают значения из одного и того же множества допустимых значений. Некоторые СУБД разрешают определять отдельно домены, задавать тип данных для каждого домена и задавать соответственно ограничения в виде бизнес-правил для доменов. В этом случае для атрибутов задается принадлежность к тому или иному домену. Иногда доменная структура выражена неявно. Так, например, в MS SQL Server вместо понятия домена вводится понятие типа данных, определенных пользователем, но смысл этого типа данных фактически эквивалентен смыслу домена. Удобно задать ограничение на значение на уровне домена, тогда оно автоматически будет выполняться для всех атрибутов, принимающих значения из этого домена. Если меняется ограничение, то его замена проводится один раз на уровне домена, а все атрибуты, которые принимают значения из этого домена, будут автоматически работать по новому правилу.

· Ограничения целостности, задаваемые на уровне отношения. Некоторые семантические правила невозможно преобразовать в выражения, которые будут применимы только к одному столбцу. Например, при создании отношения Читатели потребовать наличия по крайней мере одного телефонного номера (домашнего или рабочего) для быстрой связи с читателем. Для MS Access или MS SQL Server соответствующее выражение будет следующим:

HOME_PHON IS NOT NULL OR WORK_PHON IS NOT NULL

· Ограничения целостности, задаваемые на уровне связи между отношениями : задание обязательности связи, принципов каскадного удаления и каскадного обновления данных, задание поддержки ограничений по мощности связи. Эти виды ограничений могут быть выражены заданием обязательности или необязательности значений внешних ключей во взаимосвязанных отношениях.

Декларативные ограничения целостности относятся к ограничениям, которые являются немедленно проверяемыми. Есть ограничения целостности, которые являются откладываемыми. Эти ограничения целостности поддерживаются механизмом транзакций и триггеров.

Реляционная модель данных (РМД) некоторой предметной области представляет собой набор отношений, изменяющихся во времени. При создании информационной системы совокупность отношений позволяет хранить данные об объектах предметной области и моделировать связи между ними. Элементы РМД и формы их представления приведены в табл. 3.1.

Таблица 3.1 Элементы реляционной модели

Отношение является важнейшим понятием и представляет собой двумерную таблицу, содержащую некоторые данные.

Сущность есть объект любой природы, данные о котором хранятся в базе данных. Данные о сущности хранятся в отношении.

Атрибуты представляют собой свойства, характеризующие сущность. В структуре таблицы каждый атрибут именуется и ему соответствует заголовок некоторого столбца таблицы.
Математически отношение можно описать следующим образом. Пусть даны n множеств Dl, D2, D3,..., Dn, тогда отношение R есть множество упорядоченных кортежей , где dk ? Dk, dk - атрибут , a Dk - домен отношения R.

В общем случае порядок кортежей в отношении, как и в любом множестве, не определен. Однако в реляционных СУБД для удобства кортежи все же упорядочивают. Чаще всего для этого выбирают некоторый атрибут, по которому система автоматически сортирует кортежи по возрастанию или убыванию. Если пользователь не назначает атрибута упорядочения, система автоматически присваивает номер кортежам в порядке их ввода. Формально, если переставить атрибуты в отношении, то получается новое отношение. Однако в реляционных БД перестановка атрибутов не приводит к образованию нового отношения.

Домен представляет собой множество всех возможных значений определенного атрибута отношения. Отношение СОТРУДНИК включает 4 домена. Домен 1 содержит фамилии всех сотрудников, домен 2 - номера всех отделов фирмы, домен 3 - названия всех должностей, домен 4 - даты рождения всех сотрудников. Каждый домен образует значения одного типа данных, например, числовые или символьные.

Отношение СОТРУДНИК содержит 3 кортежа. Кортеж рассматриваемого отношения состоит из 4-х элементов, каждый из которых выбирается из соответствующего домена. Каждому кортежу соответствует строка таблицы.

Схема отношения (заголовок отношения) представляет собой список имен атрибутов. Например, для приведенного примера схема отношения имеет вид СОТРУДНИК (ФИО, Отдел, Должность, Д_Рождения). Множество собственно кортежей отношения часто называют содержимым (телом) отношения .

Первичным ключом (ключом отношения, ключевым атрибутом) называется атрибут отношения, однозначно идентифицирующий каждый из его кортежей. Например, в отношении СОТРУДНИК (ФИО, Отдел, Должность, Д_Рождения) ключевым является атрибут "ФИО". Ключ может быть составным (сложным) , т. е. состоять из нескольких атрибутов.

Каждое отношение обязательно имеет комбинацию атрибутов, которая может служить ключом. Ее существование гарантируется тем, что отношение - это множество, которое не содержит одинаковых элементов - кортежей. Т. е. в отношении нет повторяющихся кортежей, а это значит, что, по крайней мере, вся совокупность атрибутов обладает свойством однозначной идентификации кортежей отношения. Во многих СУБД допускается создавать отношения, не определяя ключи.

Возможны случаи, когда отношение имеет несколько комбинаций атрибутов, каждая из которых однозначно определяет все кортежи отношения. Все эти комбинации атрибутов являются возможными ключами отношения. Любой из возможных ключей может быть выбран как первичный .

Если выбранный первичный ключ состоит из минимально необходимого набора атрибутов, говорят, что он является не избыточным .

Ключи обычно используют для достижения следующих целей:

1) исключения дублирования значений в ключевых атрибутах (остальные атрибуты в расчет не принимаются);

2) упорядочения кортежей. Возможно упорядочение по, возрастанию или убыванию значений всех ключевых атрибутов, а также смешанное упорядочение (по одним - возрастание, а по другим - убывание);

3) ускорения работы к кортежами отношения (подраздел 3.2);

4) организации связывания таблиц (подраздел 3.3).

Пусть в отношении R1 имеется не ключевой атрибут А, значения которого являются значениями ключевого атрибута В другого отношения R2. Тогда говорят, что атрибут А отношения R1 есть внешний ключ .

С помощью внешних ключей устанавливаются связи между отношениями. Например, имеются два отношения СТУДЕНТ (ФИО, Группа, Специальность) и ПРЕДМЕТ (Назв.Пр., Часы), которые связаны отношением СТУДЕНТ_ПРЕДМЕТ (ФИО, . Назв.Пр. Оценка) (рис. 3.2). В связующем отношении атрибуты ФИО и Назв.Пр образуют составной ключ. Эти атрибуты представляют собой внешние ключи, являющиеся первичными ключами других отношений.

Реляционная модель накладывает на внешние ключи ограничение для обеспечения целостности данных, называемое ссылочной целостностью . Это означает, что каждому значению внешнего ключа должны соответствовать строки в связываемых отношениях.

Поскольку не всякой таблице можно поставить в соответствие отношение, приведем условия, выполнение которых позволяет таблицу считать отношением.

1. Все строки таблицы должны быть уникальны, т. е. не может быть строк с одинаковыми первичными ключами.

2. Имена столбцов таблицы должны быть различны, а значения их простыми, т. е. недопустима группа значений в одном столбце одной строки.

3. Все строки одной таблицы должны иметь одну структуру, соответствующую именам и типам столбцов.

4. Порядок размещения строк в таблице может быть произвольным.

Наиболее часто таблица с отношением размещается в отдельном файле. В некоторых СУБД одна отдельная таблица (отношение) считается базой данных. В других СУБД база данных может содержать несколько таблиц.

В общем случае можно считать, что БД включает одну или несколько таблиц, объединенных смысловым содержанием, а также процедурами контроля целостности и обработки информации в интересах решения некоторой прикладной задачи. Например, при использовании СУБД Microsoft Access в файле БД наряду с таблицами хранятся и другие объекты базы: запросы, отчеты, формы, макросы и модули.

Таблица данных обычно хранится на магнитном диске в отдельном файле операционной системы, поэтому по ее именованию могут существовать ограничения. Имена полей хранятся внутри таблиц. Правила их формирования определяются СУБД, которые, как правило, на длину полей и используемый алфавит серьезных ограничений не накладывают.

Если задаваемое таблицей отношение имеет ключ, то считается, что таблица тоже имеет ключ, и ее называют ключевой или таблицей с ключевыми полями .

У большинства СУБД файл таблицы включает управляющую часть (описание типов полей, имена полей и другая информация) и область размещения записей.

К отношениям можно применять систему операций, позволяющую получать одни отношения из других. Например, результатом запроса к реляционной БД может быть новое отношение, вычисленное на основе имеющихся отношений. Поэтому можно разделить обрабатываемые данные на хранимую и вычисляемую части. Основной единицей обработки данных в реляционных БД является отношение, а не отдельные его кортежи (записи).

Индексирование

Как отмечалось выше, определение ключа для таблицы означает автоматическую сортировку записей, контроль отсутствия повторений значений в ключевых полях записей и повышение скорости выполнения операций поиска в таблице. Для реализации этих функций в СУБД применяют индексирование . Термин "индекс" тесно связан с понятием "ключ", хотя между ними есть и некоторое отличие.

Под индексом понимают средство ускорения операции поиска записей в таблице, а следовательно, и других операций, использующих поиск: извлечение, модификация, сортировка и т. д. Таблицу, для которой используется индекс, называют индексированной .

Индекс выполняет роль оглавления таблицы, просмотр которого предшествует обращению к записям таблицы. В некоторых системах, например Paradox, индексы хранятся в индексных файлах, хранимых отдельно от табличных файлов.

Варианты решения проблемы организации физического доступа к информации зависят в основном от следующих факторов:

Вида содержимого в поле ключа записей индексного файла;

Типа используемых ссылок (указателей) на запись основной таблицы;

Метода поиска нужных записей.

В поле ключа индексного файла можно хранить значения ключевых полей индексируемой таблицы либо свертку ключа (так называемый хеш-код). Преимущество хранения хеш-кода вместо значения состоит в том, что длина свертки независимо от длины исходного значения ключевого поля всегда имеет некоторую постоянную и достаточно малую величину (например, 4 байта), что существенно снижает время поисковых операций. Недостатком хеширования является необходимость выполнения операции свертки (требует определенного времени), а также борьба с возникновением коллизий (свертка различных значений может дать одинаковый хеш-код).

Абсолютный (действительный)

Относительный

Символический (идентификатор).

На практике чаще всего используются два метода поиска :

Последовательный

Бинарный (основан на делении интервала поиска пополам).

Проиллюстрируем организацию индексирования таблиц двумя схемами: одноуровневой и двухуровневой. При этом примем ряд предположений, обычно выполняемых в современных вычислительных системах Пусть ОС поддерживает прямую организацию данных на магнитных дисках, основные таблицы и индексные файлы хранятся в отдельных файлах. Информация файлов хранится в виде совокупности блоков фиксированного размера, например, целого числа кластеров.

При одноуровневой схеме в индексном файле хранятся короткие записи, имеющие два поля: поле содержимого старшего ключа (хеш-кода ключа) адресуемого блока и поле адреса начала этого блока. В каждом блоке записи располагаются в порядке возрастания значения ключа или свертки. Старшим ключом каждого блока является ключ его последней записи.

Если в индексном файле хранятся хеш-коды ключевых полей индексированной таблицы, то алгоритм поиска нужной записи (с указанным ключом) в таблице включает в себя следующие три этапа.

1. Образование свертки значения ключевого поля искомой записи.

2. Поиск в индексном файле записи о блоке, значение первого поля которого больше полученной свертки (это гарантирует нахождение искомой свертки в этом блоке).

3. Последовательный просмотр записей блока до совпадения сверток искомой записи и записи блока файла. В случае коллизий сверток ищется запись, значение ключа которой совпадает со значением ключа искомой записи.

Основным недостатком одноуровневой схемы является то, что ключи (свертки) записей хранятся вместе с записями. Это приводит к увеличению времени поиска записей из-за большой длины просмотра (значения данных в записях приходится пропускать).

Двухуровневая схема в ряде случаев оказывается более рациональной, в ней ключи (свертки) записей отделены от содержимого записей (рис. 3.4). В этой схеме индекс основной таблицы распределен по совокупности файлов: одному файлу главного индекса и множеству файлов с блоками ключей.

На практике для создания индекса для некоторой таблицы БД пользователь указывает поле таблицы, которое требует индексации. Ключевые поля таблицы во многих СУБД как правило индексируются автоматически. Индексные файлы, создаваемые по ключевым полям таблицы, часто называются файлами первичных индексов .

Индексы, создаваемые пользователем для не ключевых полей, иногда называют вторичными (пользовательскими) индексами . Введение таких индексов не изменяет физического расположения записей таблицы, но влияет на последовательность просмотра записей. Индексные файлы, создаваемые для поддержания вторичных индексов таблицы, обычно называются файлами вторичных индексов .

Связь вторичного индекса с элементами данных базы может быть установлена различными способами. Один из них - использование вторичного индекса как входа для получения первичного ключа, по которому затем с использованием первичного индекса производится поиск необходимых записей.

Некоторыми СУБД, например Access, деление индексов на первичные и вторичные не производится. В этом случае используются автоматически создаваемые индексы и индексы, определяемые пользователем по любому из не ключевых полей.

Главная причина повышения скорости выполнения различных операций в индексированных таблицах состоит в том, что основная часть работы производится с небольшими индексными файлами, а не с самими таблицами. Наибольший эффект повышения производительности работы с индексированными таблицами достигается для значительных по объему таблиц. Индексирование требует небольшого дополнительного места на диске и незначительных затрат процессора на изменение индексов в процессе работы. Индексы в общем случае могут изменяться перед выполнением запросов к БД, после выполнения запросов к БД, по специальным командам пользователя или программным вызовам приложений.

Связывание таблиц

При проектировании реальных БД информацию обычно размещают в нескольких таблицах. Таблицы при этом связаны семантикой информации. В реляционных СУБД для указания связей таблиц производят операцию их связывания .

Укажем выигрыш, обеспечиваемый в результате связывания таблиц. Многие СУБД при связывании таблиц автоматически выполняют контроль целостности вводимых в базу данных в соответствии с установленными связями. В конечном итоге это повышает достоверность хранимой в БД информации. Кроме того, установление связи между таблицами облегчает доступ к данным. Связывание таблиц при выполнении таких операций как поиск, просмотр, редактирование, выборка и подготовка отчетов обычно обеспечивает возможность обращения к, произвольным полям связанных записей. Это уменьшает количество явных обращений к таблицам данных и число манипуляций в каждой из них.

Основы реляционной модели данных были впервые изложены в статье Е.Кодда в 1970 г. Эта работа послужила стимулом для большого количества статей и книг, в которых реляционная модель получила дальнейшее развитие. Наиболее распространенная трактовка реляционной модели данных принадлежит К.Дейту . Согласно Дейту, реляционная модель состоит из трех частей:

    Структурной части.

    Целостной части.

    Манипуляционной части.

Структурная часть описывает, какие объекты рассматриваются реляционной моделью. Постулируется, что единственной структурой данных, используемой в реляционной модели, являются нормализованные n-арные отношения.

Целостная часть описывает ограничения специального вида, которые должны выполняться для любых отношений в любых реляционных базах данных. Это целостность сущностей и целостность внешних ключей .

Манипуляционная часть описывает два эквивалентных способа манипулирования реляционными данными - реляционную алгебру и реляционное исчисление .

В данной главе рассматривается структурная часть реляционной модели.

Типы данных

Любые данные, используемые в программировании, имеют свои типы данных.

Важно! Реляционная модель требует, чтобы типы используемых данных были простыми .

Для уточнения этого утверждения рассмотрим, какие вообще типы данных обычно рассматриваются в программировании. Как правило, типы данных делятся на три группы:

    Простые типы данных.

    Структурированные типы данных.

    Ссылочные типы данных.

Простые типы данных

Простые, или атомарные, типы данных не обладают внутренней структурой. Данные такого типа называют скалярами . К простым типам данных относятся следующие типы:

    Логический.

    Строковый.

    Численный.

Различные языки программирования могут расширять и уточнять этот список, добавляя такие типы как:

  • Вещественный.

  • Денежный.

    Перечислимый.

    Интервальный.

Конечно, понятие атомарности довольно относительно. Так, строковый тип данных можно рассматривать как одномерный массив символов, а целый тип данных - как набор битов. Важно лишь то, что при переходе на такой низкий уровень теряется семантика (смысл) данных . Если строку, выражающую, например, фамилию сотрудника, разложить в массив символов, то при этом теряется смысл такой строки как единого целого.

Структурированные типы данных

Структурированные типы данных предназначены для задания сложных структур данных. Структурированные типы данных конструируются из составляющих элементов, называемых компонентами, которые, в свою очередь, могут обладать структурой. В качестве структурированных типов данных можно привести следующие типы данных:

  • Записи (Структуры)

С математической точки зрения массив представляет собой функцию с конечной областью определения. Например, рассмотрим конечное множество натуральных чисел

называемое множеством индексов. Отображение

из множества во множество вещественных чисел задает одномерный вещественный массив. Значение этой функции для некоторого значения индекса называется элементом массива, соответствующим . Аналогично можно задавать многомерные массивы.

Запись (или структура) представляет собой кортеж из некоторого декартового произведения множеств. Действительно, запись представляет собой именованный упорядоченный набор элементов , каждый из которых принадлежит типу . Таким образом, запись есть элемент множества . Объявляя новые типы записей на основе уже имеющихся типов, пользователь может конструировать сколь угодно сложные типы данных.

Общим для структурированных типов данных является то, что они имеют внутреннюю структуру , используемую на том же уровне абстракции , что и сами типы данных.

Поясним это следующим образом. При работе с массивами или записями можно манипулировать массивом или записью и как с единым целым (создавать, удалять, копировать целые массивы или записи), так и поэлементно. Для структурированных типов данных есть специальные функции - конструкторы типов, позволяющие создавать массивы или записи из элементов более простых типов.

Работая же с простыми типами данных, например с числовыми, мы манипулируем ими как неделимыми целыми объектами. Чтобы "увидеть", что числовой тип данных на самом деле сложен (является набором битов), нужно перейти на более низкий уровень абстракции. На уровне программного кода это будет выглядеть как ассемблерные вставки в код на языке высокого уровня или использование специальных побитных операций.

Ссылочные типы данных

Ссылочный тип данных (указатели ) предназначен для обеспечения возможности указания на другие данные. Указатели характерны для языков процедурного типа, в которых есть понятие области памяти для хранения данных. Ссылочный тип данных предназначен для обработки сложных изменяющихся структур, например деревьев, графов, рекурсивных структур.

Типы данных, используемые в реляционной модели

Собственно, для реляционной модели данных тип используемых данных не важен. Требование, чтобы тип данных был простым , нужно понимать так, что в реляционных операциях не должна учитываться внутренняя структура данных . Конечно, должны быть описаны действия, которые можно производить с данными как с единым целым, например, данные числового типа можно складывать, для строк возможна операция конкатенации и т.д.

С этой точки зрения, если рассматривать массив, например, как единое целое и не использовать поэлементных операций, то массив можно считать простым типом данных. Более того, можно создать свой, сколь угодно сложных тип данных, описать возможные действия с этим типом данных, и, если в операциях не требуется знание внутренней структуры данных, то такой тип данных также будет простым с точки зрения реляционной теории. Например, можно создать новый тип - комплексные числа как запись вида , где . Можно описать функции сложения, умножения, вычитания и деления, и все действия с компонентами и выполнять только внутри этих операций. Тогда, если в действиях с этим типом использовать только описанные операции, то внутренняя структура не играет роли, и тип данных извне выглядит как атомарный.

Именно так в некоторых пост-реляционных СУБД реализована работа со сколь угодно сложными типами данных, создаваемых пользователями.

Домены

В реляционной модели данных с понятием тип данных тесно связано понятие домена, которое можно считать уточнением типа данных.

Домен - это семантическое понятие. Домен можно рассматривать как подмножество значений некоторого типа данных имеющих определенный смысл. Домен характеризуется следующими свойствами:

    Домен имеет уникальное имя (в пределах базы данных).

    Домен определен на некотором простом типе данных или на другом домене.

    Домен может иметь некоторое логическое условие , позволяющее описать подмножество данных, допустимых для данного домена.

    Домен несет определенную смысловую нагрузку .

Например, домен , имеющий смысл "возраст сотрудника" можно описать как следующее подмножество множества натуральных чисел:

Отличие домена от понятия подмножества состоит именно в том, что домен отражает семантику , определенную предметной областью. Может быть несколько доменов, совпадающих как подмножества, но несущие различный смысл. Например, домены "Вес детали" и "Имеющееся количество" можно одинаково описать как множество неотрицательных целых чисел, но смысл этих доменов будет различным, и это будут различные домены.

Основное значение доменов состоит в том, что домены ограничивают сравнения . Некорректно, с логической точки зрения, сравнивать значения из различных доменов, даже если они имеют одинаковый тип. В этом проявляется смысловое ограничение доменов. Синтаксически правильный запрос "выдать список всех деталей, у которых вес детали больше имеющегося количества" не соответствует смыслу понятий "количество" и "вес".

Замечание . Понятие домена помогает правильно моделировать предметную область. При работе с реальной системой в принципе возможна ситуация когда требуется ответить на запрос, приведенный выше. Система даст ответ, но, вероятно, он будет бессмысленным.

Замечание . Не все домены обладают логическим условием, ограничивающим возможные значения домена. В таком случае множество возможных значений домена совпадает с множеством возможных значений типа данных.

Замечание . Не всегда очевидно, как задать логическое условие, ограничивающее возможные значения домена. Я буду благодарен тому, кто приведет мне условие на строковый тип данных, задающий домен "Фамилия сотрудника". Ясно, что строки, являющиеся фамилиями не должны начинаться с цифр, служебных символов, с мягкого знака и т.д. Но вот является ли допустимой фамилия "Ггггггыыыыы"? Почему бы нет? Очевидно, нет! А может кто-то назло так себя назовет. Трудности такого рода возникают потому, что смысл реальных явлений далеко не всегда можно формально описать. Просто мы, как все люди, интуитивно понимаем, что такое фамилия, но никто не может дать такое формальное определение, которое отличало бы фамилии от строк, фамилиями не являющимися. Выход из этой ситуации простой - положиться на разум сотрудника, вводящего фамилии в компьютер.

Отношения, атрибуты, кортежи отношения

Определения и примеры

Фундаментальным понятием реляционной модели данных является понятие отношения . В определении понятия отношения будем следовать книге К. Дейта .

Определение 1. Атрибут отношения есть пара вида <Имя_атрибута: Имя_домена>.

Имена атрибутов должны быть уникальны в пределах отношения. Часто имена атрибутов отношения совпадают с именами соответствующих доменов.

Определение 2 . Отношение , определенное на множестве доменов (не обязательно различных), содержит две части: заголовок и тело.

Заголовок отношения содержит фиксированное количество атрибутов отношения:

Тело отношения содержит множество кортежей отношения. Каждый кортеж отношения представляет собой множество пар вида <Имя_атрибута: Значение_атрибута>:

таких что значение атрибута принадлежит домену

Отношение обычно записывается в виде:

или короче

,

или просто

Число атрибутов в отношении называют степенью (или -арностью ) отношения.

Мощность множества кортежей отношения называют мощностью отношения.

Возвращаясь к математическому понятию отношения, введенному в предыдущей главе, можно сделать следующие выводы:

Вывод 1 . Заголовок отношения описывает декартово произведение доменов, на котором задано отношение. Заголовок статичен, он не меняется во время работы с базой данных. Если в отношении изменены, добавлены или удалены атрибуты, то в результате получим уже другое отношение (пусть даже с прежним именем).

Вывод 2 . Тело отношения представляет собой набор кортежей, т.е. подмножество декартового произведения доменов. Таким образом, тело отношения собственно и является отношением в математическом смысле слова. Тело отношения может изменяться во время работы с базой данных - кортежи могут изменяться, добавляться и удаляться.

Пример 1 . Рассмотрим отношение "Сотрудники" заданное на доменах "Номер_сотрудника", "Фамилия", "Зарплата", "Номер_отдела". Т.к. все домены различны, то имена атрибутов отношения удобно назвать так же, как и соответствующие домены. Заголовок отношения имеет вид.